Application Moment et Réduction en Mécanique

Tudor S. Ratiu

School of Mathematics

Shanghai Jiao Tong University

OVERVIEW OF THE COURSE

• Symplectic manifolds

• Poisson manifolds

• Lie group actions

• Abstract symmetry reduction

• Cotangent bundle reduction

• Lagrangian approach to reduction

• Conservation laws via generalized distributions

• The optimal momentum map and groupoids

• Optimal reduction

• Singular point reduction

• Singular orbit reduction

• Poisson reduction

• Coisotropic reduction

• Cosymplectic reduction

SYMPLECTIC MANIFOLDS

A symplectic manifold is a pair (M, ω) , where M is a manifold and $\omega \in \Omega^2(M)$ is a closed non-degenerate two-form on M, that is,

•
$$d\omega = 0$$

• for every $m \in M$, the map

$$v \in T_m M \mapsto \omega(m)(v, \cdot) \in T_m^* M$$

is a linear isomorphism.

If ω is allowed to be degenerate, (M, ω) is called a presymplectic manifold. A Hamiltonian dynamical **system** is a triple (M, ω, h) , where (M, ω) is a symplectic manifold and $h \in C^{\infty}(M)$ is the **Hamiltonian function** of the system. By non-degeneracy of the symplectic form ω , to each Hamiltonian system one can associate a **Hamiltonian vector field** $X_h \in \mathfrak{X}(M)$, defined by the equality

$$\mathbf{i}_{X_h}\omega := \omega(X_h, \cdot) = \mathbf{d}h.$$

Example V vector space, V^* its dual. Let $Z = V \times V^*$. The **canonical symplectic form** Ω on Z is defined by

$$\Omega((v_1, \alpha_1), (v_2, \alpha_2)) := \langle \alpha_2, v_1 \rangle - \langle \alpha_1, v_2 \rangle.$$
$$[\Omega] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = : \mathbb{J}$$

Example Q manifold, T^*Q its cotangent bundle, π_Q : $T^*Q \to Q$ projection. The **canonical one-form** Θ on T^*Q defined by

 $\Theta(\beta) \cdot v_{\beta} := \langle \beta, T_{\beta} \pi_Q(v_{\beta}) \rangle, \quad \beta \in T^*Q, \quad v_{\beta} \in T_{\beta}(T^*Q).$

In canonical coordinates $\Theta = p_i dq^i$

The canonical symplectic form Ω on the cotangent bundle T^*Q is defined by $\Omega = -d\Theta$.

Darboux theorem: Locally $\omega|_U = \sum_{i=1}^n dq^i \wedge dp_i$.

In canonical coordinates, X_h is determined by the wellknown **Hamilton equations**,

$$\frac{dq^{i}}{dt} = \frac{\partial h}{\partial p_{i}}, \qquad \frac{dp_{i}}{dt} = -\frac{\partial h}{\partial q^{i}}.$$

The **Poisson bracket** of $f, g \in C^{\infty}(M)$ is the function $\{f, g\} \in C^{\infty}(M)$ defined by

$$\{f, g\}(z) = \omega(z) \left(X_f(z), X_g(z) \right).$$

In canonical coordinates, the Poisson bracket has the form

$$\{f, g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial g}{\partial q^{i}} \frac{\partial f}{\partial p_{i}} \right)$$

٠

POISSON MANIFOLDS

• $(M, \{\cdot, \cdot\})$ Poisson manifold if $(C^{\infty}(M), \{\cdot, \cdot\})$ Lie algebra such that

$$\{fg,h\} = f\{g,h\} + g\{f,h\}$$

- Casimir functions are the elements of the center of $(C^{\infty}(M), \{\cdot, \cdot\}).$
- Hamiltonian vector field of $h \in C^{\infty}(M)$

$$\pounds_{X_h} f := \langle \mathbf{d}f, X_h \rangle := X_h[f] = \{f, h\}, \text{ for all } f \in C^{\infty}(M).$$

Example: The Lie-Poisson bracket. The dual \mathfrak{g}^* of a Lie algebra \mathfrak{g} is a Poisson manifold with respect to the \pm -Lie-Poisson brackets $\{\cdot, \cdot\}_{\pm}$ defined by

$$\{f,g\}_{\pm}(\mu) := \pm \left\langle \mu, \left[\frac{\delta f}{\delta \mu}, \frac{\delta g}{\delta \mu}\right] \right\rangle,$$

where $\frac{\delta f}{\delta \mu} \in \mathfrak{g}$ is defined by

$$\left\langle \nu, \frac{\delta f}{\delta \mu} \right\rangle := Df(\mu) \cdot \nu,$$

for any $\nu \in \mathfrak{g}^*$. The Hamiltonian vector field of $h \in C^{\infty}(\mathfrak{g}^*)$ $(\dot{f} = \{f, h\} \Leftrightarrow X_h = \{\cdot, f\})$ is given by

$$X_h(\mu) = \mp \operatorname{ad}_{\delta h/\delta \mu}^* \mu, \quad \mu \in \mathfrak{g}^*.$$

Example: Frozen Lie-Poisson bracket. Same notations as before. Let $\nu \in \mathfrak{g}^*$ and define the **frozen Lie-Poisson** brackets $\{\cdot, \cdot\}_{\pm}$ defined by

$$\{f,g\}_{\pm}^{\nu}(\mu) := \pm \left\langle \nu, \left[\frac{\delta f}{\delta \mu}, \frac{\delta g}{\delta \mu}\right] \right\rangle.$$

The Hamiltonian vector field of $h \in C^{\infty}(\mathfrak{g}^*)$ is given by

$$X_h(\mu) = \mp \operatorname{ad}_{\delta h/\delta \mu}^* \nu, \quad \mu \in \mathfrak{g}^*.$$

The Lie-Poisson and frozen Lie-Poisson bracket are **compatible**, that is, $\{,\}_{\pm} + s\{,\}_{\pm}^{\nu}$ is also a Poisson bracket on \mathfrak{g}^* for any $\nu \in \mathfrak{g}^*$ and any $s \in \mathbb{R}$.

Example: Operator Algebra Brackets. \mathcal{H} be a complex Hilbert space.

- $\mathfrak{S}(\mathcal{H})$, trace class operators
- $\mathfrak{H}\mathfrak{S}(\mathcal{H})$, Hilbert-Schmidt operators
- $\Re(\mathcal{H})$, compact operators
- $\mathfrak{B}(\mathcal{H})$, bounded operators

They form involutive Banach algebras. $\mathfrak{S}(\mathcal{H})$, $\mathfrak{HS}(\mathcal{H})$, $\mathfrak{K}(\mathcal{H})$ are self adjoint ideals in $\mathfrak{B}(\mathcal{H})$. $\mathfrak{S}(\mathcal{H}) \subset \mathfrak{H}(\mathcal{H}) \subset \mathfrak{K}(\mathcal{H}) \subset \mathfrak{B}(\mathcal{H})$ $\mathfrak{K}(\mathcal{H})^* \cong \mathfrak{S}(\mathcal{H}), \quad \mathfrak{H}(\mathcal{H})^* \cong \mathfrak{H}(\mathcal{H}), \quad \mathfrak{S}(\mathcal{H})^* \cong \mathfrak{B}(\mathcal{H});$ the right hand sides are all Banach Lie algebras. These dualities are implemented by the strongly nondegenerate pairing

$$\langle x, \rho \rangle = \operatorname{trace}(x\rho)$$

where $x \in \mathfrak{S}(\mathcal{H})$, $\rho \in \mathfrak{K}(\mathcal{H})$ for the first isomorphism, $\rho, x \in \mathfrak{HS}(\mathcal{H})$ for the second isomorphism, and $x \in \mathfrak{B}(\mathcal{H})$, $\rho \in \mathfrak{S}(\mathcal{H})$ for the third isomorphism. The Banach spaces $\mathfrak{S}(\mathcal{H})$, $\mathfrak{HS}(\mathcal{H})$, and $\mathfrak{K}(\mathcal{H})$ are Banach Lie-Poisson spaces in a rigorous functional analytic sense. The Lie-Poisson bracket becomes in this case

${F, H}(\rho) = \pm \operatorname{trace}\left(\left[\mathbf{D}F(\rho), \mathbf{D}H(\rho)\right]\rho\right)$

where ρ is an element of $\mathfrak{S}(\mathcal{H})$, $\mathfrak{HS}(\mathcal{H})$, or $\mathfrak{K}(\mathcal{H})$, respectively. The bracket $[\mathbf{D}F(\rho), \mathbf{D}H(\rho)]$ denotes the commutator bracket of operators. The Hamiltonian vector field associated to H is given by

 $X_H(\rho) = \pm [\mathbf{D}H(\rho), \rho].$

The Poisson tensor. The derivation property of the Poisson bracket implies that for any two functions $f, g \in C^{\infty}(M)$, the value of the bracket $\{f, g\}(z)$ on f only through df(z) which allows us to define a contravariant antisymmetric two-tensor $B \in \Lambda^2(M)$ by

$$B(z)(\alpha_z, \beta_z) = \{f, g\}(z),$$

with $df(z) = \alpha_z$ and $dg(z) = \beta_z$. This tensor is called the **Poisson tensor** of M. The vector bundle map B^{\sharp} : $T^*M \to TM$ naturally associated to B is defined by

$$B(z)(\alpha_z, \beta_z) = \langle \alpha_z, B^{\sharp}(\beta_z) \rangle.$$

Its range $D := B^{\sharp}(T^*M) \subset TM$ is called the **character**istic distribution. For any point $m \in M$, the dimension of D(m) as a vector subspace of T_mM is called the **rank** of the Poisson manifold $(M, \{\cdot, \cdot\})$ at the point m. The Weinstein coordinates of a Poisson manifold. Let $(M, \{\cdot, \cdot\})$ be a *m*-dimensional Poisson manifold and $z_0 \in M$ a point where the rank of $(M, \{\cdot, \cdot\})$ equals 2n, $0 \leq 2n \leq m$. There exists a chart (U, φ) of M whose domain contains the point z_0 and such that the associated local coordinates, denoted by

$$(q^1, \ldots, q^n, p_1, \ldots, p_n, z^1, \ldots, z^{m-2n}),$$

satisfy

$$\{q^i, q^j\} = \{p_i, p_j\} = \{q^i, z^k\} = \{p_i, z^k\} = 0,$$

and $\{q^i, p_j\} = \delta^i_j$, for all i, j, k, $1 \le i, j \le n$, $1 \le k \le m-2n$.

For all $k, l, 1 \le k, l \le m - 2n$, the Poisson bracket $\{z^k, z^l\}$ is a function of the local coordinates z^1, \ldots, z^{m-2n} exclusively, and vanishes at z_0 . Hence, the restriction of the bracket $\{\cdot, \cdot\}$ to the coordinates z^1, \ldots, z^{m-2n} induces a Poisson structure that is usually referred to as the **transverse Poisson structure** of $(M, \{\cdot, \cdot\})$ at m.

If the rank is equal to 2n in a neighborhood of z_0 , then the transverse structure is zero. A smooth mapping φ : $(M_1, \{\cdot, \cdot\}_1) \rightarrow (M_2, \{\cdot, \cdot\}_2)$ is canonical or Poisson if for all $g, h \in C^{\infty}(M_2)$ we have

$$\varphi^* \{g, h\}_2 = \{\varphi^* g, \varphi^* g\}_1.$$

In the symplectic category, φ : $(M_1, \omega_1) \rightarrow (M_2, \omega_2)$ canonical or symplectic if

$$\varphi^*\omega_2 = \omega_1.$$

• Symplectic maps are immersions.

• A diffeomorphism $\varphi : M_1 \to M_2$ between two symplectic manifolds (M_1, ω_1) and (M_2, ω_2) is symplectic if and only if it is Poisson.

• If the symplectic map $\varphi : M_1 \to M_2$ is not a diffeomorphism it may not be a Poisson map.

• A diffeomorphism $\varphi : T^*S \to T^*Q$ preserves the canonical one-forms Θ_Q on T^*Q and Θ_S on T^*S if and only if φ is the cotangent lift T^*f of some diffeomorphism $f: Q \to S$. **Proof** Suppose that $f : Q \to S$ is a diffeomorphism. Then for $\beta \in T^*S$ and $v \in T_{\beta}(T^*S)$ we have

$$((T^*f)^* \Theta_Q) (\beta) \cdot v = \Theta_Q (T^*f(\beta)) \cdot TT^*f(v) = \langle T^*f(\beta), (T\pi_Q \circ TT^*f) (v) \rangle = \langle \beta, T(f \circ \pi_Q \circ T^*f) (v) \rangle = \langle \beta, T\pi_S(v) \rangle$$

because $f \circ \pi_Q \circ T^* f = \pi_S$.

Idea for the converse. Assume that $\varphi^* \Theta_Q = \Theta_S$, i.e.,

 $\langle \varphi(\beta), T(\pi_Q \circ \varphi)(v) \rangle = \langle \beta, T\pi_S(v) \rangle, \ \forall \beta \in T^*S, \ v \in T_\beta(T^*S)$

Since φ is a diffeomorphism, the range of $T_{\beta}(\pi_{Q} \circ \varphi)$ is $T_{\pi_Q(\varphi(\beta))}Q$, so letting $\beta = 0 \Rightarrow \varphi(0) = 0$. Argue similarly for φ^{-1} and conclude that φ restricted to the zero section S of T^*S is a diffeomorphism onto the zero section Q of T^*Q . Define $f := \varphi^{-1}|Q$. Now one shows that φ is fiber preserving, i.e., $f \circ \pi_Q = \pi_S \circ \varphi^{-1}$. This is the main technical point. Then, using this, one shows that $\varphi = T^* f$.

Classical coordinate proof of the first part. Write

$$(s^1,\ldots,s^n) = f(q^1,\ldots,q^n)$$

Since $f: Q \to S$ is diffeomorphism, we can solve $q^i = q^i(s^1, \ldots, s^n)$. Coordinates on T^*Q are $(q^1, \ldots, q^n, p_1, \ldots, p_n)$ and on T^*S they are $(s^1, \ldots, s^n, r_1, \ldots, r_n)$. So, both q^i and p_j are functions of $(s^1, \ldots, s^n, r_1, \ldots, r_n)$. The map T^*f is given by

$$T^*f(s^1,...,s^n,r_1,...,r_n) = (q^1,...,q^n,p_1,...,p_n).$$

But then, locally,

$$(\Theta_S =) r_i ds^i = r_i \frac{\partial s^i}{\partial q^k} dq^k = p_k dq^k (= (T^*f)^* \Theta_Q)$$

Let $(S, \{\cdot, \cdot\}^S)$ and $(M, \{\cdot, \cdot\}^M)$ be two Poisson manifolds such that $S \subset M$ and the inclusion $i_S : S \hookrightarrow M$ is an immersion. $(S, \{\cdot, \cdot\}^S)$ is a **Poisson submanifold** of $(M, \{\cdot, \cdot\}^M)$ if i_S is a canonical map.

An immersed submanifold Q of M is called a **quasi Poisson submanifold** of $(M, \{\cdot, \cdot\}^M)$ if for any $q \in Q$, any open neighborhood U of q in M, and any $f \in C^{\infty}_M(U)$ we have

$$X_f(i_Q(q)) \in T_q i_Q(T_q Q),$$

where $i_Q : Q \hookrightarrow M$ is the inclusion and X_f is the Hamiltonian vector field of f on U with respect to the restricted Poisson bracket $\{\cdot, \cdot\}_U^M$.

• On a quasi Poisson submanifold there is a unique Poisson structure that makes it into a Poisson submanifold.

• Any Poisson submanifold is quasi Poisson.

The converse is not true!

Counterexample. Let $(M = \mathbb{R}^2, B)$ where

$$B(x,y) = \begin{pmatrix} 0 & y \\ -y & 0 \end{pmatrix}$$

and $(Q = \mathbb{R}^2, \omega_{can})$. The identity map id : $Q \to M$ is obviously not a Poisson diffeomorphism because one structure has leaves and the other is non-degenerate. But is is also clear that any Hamiltonian vector field relative to *B* is tangent to $Q = \mathbb{R}^2$ and hence (Q, ω_{can}) is a quasi-Poisson submanifold of (M, B). Given two symplectic manifolds (M, ω) and (S, ω_S) such that $S \subset M$ and the inclusion $i : S \hookrightarrow M$ is an immersion, the manifold (S, ω_S) is a **symplectic submanifold** of (M, ω) when i is a symplectic map.

Symplectic submanifolds of a symplectic manifold (M, ω) are in general neither Poisson nor quasi Poisson manifolds of M.

The only quasi Poisson submanifolds of a symplectic manifold are its open sets which are, in fact, Poisson submanifolds.

Symplectic Foliation Theorem. Let $(M, \{\cdot, \cdot\})$ be a Poisson manifold and D the associated characteristic distribution. D is a smooth and integrable generalized distribution and its maximal integral leaves form a generalized foliation decomposing M into initial submanifolds \mathcal{L} , each of which is symplectic with the unique symplectic form that makes the inclusion $i : \mathcal{L} \hookrightarrow M$ into a Poisson map, that is, \mathcal{L} is a Poisson submanifold of $(M, \{\cdot, \cdot\}).$

Example: Let \mathfrak{g}^* with the Lie-Poisson structure. The symplectic leaves of the Poisson manifolds $(\mathfrak{g}^*, \{\cdot, \cdot\}_{\pm})$ coincide with the connected components of the orbits of the elements in \mathfrak{g}^* under the coadjoint action. In this situation, the symplectic form for the leaves is given by the Kostant-Kirillov-Souriau (KKS) or orbit symplectic form

$$\omega_{\mathcal{O}}^{\pm}(\nu)\left(-\operatorname{ad}_{\xi}^{*}\nu,-\operatorname{ad}_{\eta}^{*}\nu\right)=\pm\left\langle \nu,\left[\xi,\eta\right]\right\rangle.$$

(M, {·,·}) Poisson manifold. G acts canonically on
 M when

$$\Phi_g^* \{ f, h \} = \{ \Phi_g^* f, \Phi_g^* h \}$$

for all $g \in G$.

• Easy Poisson reduction: $(M, \{\cdot, \cdot\})$ Poisson manifold, G Lie group acting canonically, freely, and properly on M. The orbit space M/G is a Poisson manifold with bracket

$${f, g}^{M/G}(\pi(m)) = {f \circ \pi, g \circ \pi}(m)$$

• Reduction of Hamiltonian dynamics: $h \in C^{\infty}(M)^G$ reduces to $\overline{h} \in C^{\infty}(M/G)$ given by $\overline{h} \circ \pi = h$ such that

$$X_{\overline{h}} \circ \pi = T\pi \circ X_h$$

• What about the symplectic leaves? This is where symplectic reduction comes in.

• Lie-Poisson reduction: Left quotient $(T^*G)/G \cong \mathfrak{g}_-^*$. The map is: $[\alpha_g] \mapsto T_e^* R_g(\alpha_g)$. Direct proof. Discuss later. Notice that the quotient is for a *left* action and the map is given by *right* translation. Will be proved later.

LIE GROUP ACTIONS

M a manifold and *G* a Lie group. A **left action** of *G* on *M* is a smooth mapping $\Phi : G \times M \to M$ such that

(i) $\Phi(e, z) = z$, for all $z \in M$ and

(ii) $\Phi(g, \Phi(h, z)) = \Phi(gh, z)$ for all $g, h \in G$ and $z \in M$.

We will often write

$$g \cdot z := \Phi(g, z) := \Phi_g(z) := \Phi^z(g).$$

The triple (M, G, Φ) is called a *G*-space or a *G*-manifold.

Examples of group actions

Translation and conjugation. The left (right)
 translation L_g : G → G, (R_g) h → gh, induces a left (right) action of G on itself.

• The inner automorphism $AD_g : G \to G$, given by $AD_g := R_{g^{-1}} \circ L_g$ defines a left action of G on itself called conjugation. Adjoint and coadjoint action. The differential at the identity of the conjugation mapping defines a linear left action of G on g called the adjoint representation of G on g

$$\operatorname{Ad}_g := T_e \operatorname{AD}_g : \mathfrak{g} \longrightarrow \mathfrak{g}.$$

If $\operatorname{Ad}_q^* : \mathfrak{g}^* \to \mathfrak{g}^*$ is the dual of Ad_g , then the map

$$\Phi: \begin{array}{ccc} G \times \mathfrak{g}^* & \longrightarrow & \mathfrak{g}^* \\ (g, \nu) & \longmapsto & \operatorname{Ad}_{g^{-1}}^* \nu, \end{array}$$

defines also a linear left action of G on \mathfrak{g}^* called the **coadjoint representation** of G on \mathfrak{g}^* .

• Group representation. If the manifold M is a vector space V and G acts linearly on V, that is, $\Phi_g \in GL(V)$ for all $g \in G$, where GL(V) denotes the group of all linear automorphisms of V, then the action is said to be a representation of G on V. For example, the adjoint and coadjoint actions of G defined above are representations.

• Tangent lift of a group action. Φ induces a natural action on the tangent bundle TM of M by

$$g \cdot v_m := T_m \Phi_g(v_m), \qquad g \in G, \quad v_m \in T_m M.$$

Cotangent lift of a group action. Let Φ : G×M →
 M be a smooth Lie group action on the manifold M.
 The map Φ induces a natural action on the cotangent
 bundle T*M of M by

$$g \cdot \alpha_m := T^*_{g \cdot m} \Phi_{g^{-1}}(\alpha_m)$$

where $g \in G$ and $\alpha_m \in T_m^*M$.

The infinitesimal generator $\xi_M \in \mathfrak{X}(M)$ associated to $\xi \in \mathfrak{g}$ is the vector field on *M* defined by

$$\xi_M(m) := \frac{d}{dt}\Big|_{t=0} \Phi_{\exp t\xi}(m) = T_e \Phi^m \cdot \xi.$$

The infinitesimal generators are complete vector fields. The flow of ξ_M equals $(t, m) \mapsto \exp t\xi \cdot m$. Moreover, the map $\xi \in \mathfrak{g} \mapsto \xi_M \in \mathfrak{X}(M)$ is a **Lie algebra antihomomorphism**, that is,

(i)
$$(a\xi + b\eta)_M = a\xi_M + b\eta_M$$
,

(ii)
$$[\xi, \eta]_M = -[\xi_M, \eta_M].$$

If the action is on the right, then $\xi \in \mathfrak{g} \mapsto \xi_M \in \mathfrak{X}(M)$ is a **Lie algebra homomorphism**.

Let \mathfrak{g} be a Lie algebra and M a smooth manifold. A (left) right Lie algebra action of \mathfrak{g} on M is a Lie algebra (anti)homomorphism $\xi \in \mathfrak{g} \mapsto \xi_M \in \mathfrak{X}(M)$ such that the mapping $(m,\xi) \in M \times \mathfrak{g} \mapsto \xi_M(m) \in TM$ is smooth.

Given a Lie group action, we will refer to the Lie algebra action induced by its infinitesimal generators as the **associated Lie algebra action**.

Stabilizers and orbits. The isotropy subgroup or stabilizer of an element m in the manifold M acted upon by the Lie group G is the closed (hence Lie) subgroup

$$G_m := \{g \in G \mid \Phi_g(m) = m\} \subset G$$

whose Lie algebra \mathfrak{g}_m equals

$$\mathfrak{g}_m = \{\xi \in \mathfrak{g} \,|\, \xi_M(m) = 0\}.$$

The orbit \mathcal{O}_m of the element $m \in M$ under the group action Φ is the set

$$\mathcal{O}_m \equiv G \cdot m := \{ \Phi_g(m) \mid g \in G \}.$$

The isotropy subgroups of the elements in a group orbit are related by the expression

$$G_{g \cdot m} = g G_m g^{-1}$$
 for all $g \in G$.

The notion of orbit allows the introduction of an equivalence relation in the manifold M, namely, two elements $x, y \in M$ are equivalent if and only if they are in the same G-orbit, that is, if there exists an element $q \in G$ such that $\Phi_q(x) = y$. The space of classes with respect to this equivalence relation is usually referred to as the **space of orbits** and, depending on the context, it is denoted by the symbol M/G.

• **Transitive action**: only one orbit, that is, $\mathcal{O}_m = M$

• Free action: $G_m = \{e\}$ for all $m \in M$

• **Proper action**: if $\overline{\Phi} : G \times M \to M \times M$ defined by

$$\overline{\Phi}(g,z) := (z, \Phi(g,z))$$

is proper. This is equivalent to: for any two convergent sequences $\{m_n\}$ and $\{g_n \cdot m_n\}$ in M, there exists a convergent subsequence $\{g_{n_k}\}$ in G.

Examples of proper actions: compact group actions, SE(n) acting on \mathbb{R}^n , Lie groups acting on themselves by translation.

Fundamental facts about proper Lie group actions $\Phi: G \times M \to M$ be a proper action of the Lie group Gon the manifold M. Then:

(i) The isotropy subgroups G_m are compact.

(ii) The orbit space M/G is a Hausdorff topological space (even when G is not Hausdorff).

(iii) If the action is free, M/G is a smooth manifold, and the canonical projection $\pi : M \to M/G$ defines on Mthe structure of a smooth left principal G-bundle. (iv) If all the isotropy subgroups of the elements of Munder the G-action are conjugate to a given one Hthen M/G is a smooth manifold and $\pi : M \to M/G$ defines the structure of a smooth locally trivial fiber bundle with structure group N(H)/H and fiber G/H.

(v) If the manifold M is paracompact then there exists a G-invariant Riemannian metric on it.

(vi) If the manifold M is paracompact then smooth G-invariant functions separate the G-orbits.

Twisted product. Let *G* be a Lie group and $H \subset G$ a subgroup. Suppose that *H* acts on the left on the manifold *A*. The **right twisted action** of *H* on the product $G \times A$ is defined by

$$(g, a) \cdot h = (gh, h^{-1} \cdot a).$$

This action is free and proper by the freeness and properness of the action on the G-factor. The **twisted product** $G \times_H A$ is defined as the orbit space $(G \times A)/H$ corresponding to the twisted action. **Tube.** Let M be a manifold and G a Lie group acting properly on M. Let $m \in M$ and denote $H := G_m$. A **tube** around the orbit $G \cdot m$ is a G-equivariant diffeomorphism

$$\varphi: G \times_H A \longrightarrow U,$$

where U is a G-invariant neighborhood of $G \cdot m$ and A is some manifold on which H acts. **Slice Theorem.** G a Lie group acting properly on M at the point $m \in M$, $H := G_m$. There exists a tube

$$\varphi: G \times_H B \longrightarrow U$$

about $G \cdot m$. *B* is an open *H*-invariant neighborhood of 0 in a vector space which is *H*-equivariantly isomorphic to $T_m M/T_m (G \cdot m)$, where the *H*-representation is given by

$$h \cdot (v + T_m(G \cdot m)) := T_m \Phi_h \cdot v + T_m(G \cdot m).$$

Slice: $S := \varphi([e, B])$ so that $U = G \cdot S$.

Dynamical consequences. $X \in \mathfrak{X}(U)^G$, $U \subset M$ open *G*-invariant, *S* slice at $m \in U$. Then there exists

• $X_T \in \mathfrak{X}(G \cdot S)^G$, $X_T(z) = \xi(z)_M(z)$ for $z \in G \cdot S$, where ξ : $G \cdot S \to \mathfrak{g}$ is smooth *G*-equivariant and $\xi(z) \in \operatorname{Lie}(N(G_z))$ for all $z \in G \cdot S$. The flow T_t of X_T is given by $T_t(z) = \exp t\xi(z) \cdot z$, so X_T is complete.

• $X_N \in \mathfrak{X}(S)^{G_m}$

• If $z = g \cdot s$, for $g \in G$ and $s \in S$, then

 $X(z) = X_T(z) + T_s \Phi_g \left(X_N(s) \right) = T_s \Phi_g \left(X_T(s) + X_N(s) \right)$

• If N_t is the flow of X_N (on S) then the integral curve of $X \in \mathfrak{X}(U)^G$ through $g \cdot s \in G \cdot S$ is

$$F_t(g \cdot s) = g(t) \cdot N_t(s),$$

where $g(t) \in G$ is the solution of

$$\dot{g}(t) = T_e L_{g(t)}(\xi(N_t(s))), \qquad g(0) = g.$$

This is the **tangential-normal** decomposition of a *G*-invariant vector field (or **Krupa decomposition** in bi-furcation theory).

Geometric consequences. Orbit type, fixed point, and isotropy type spaces

$$M_{(H)} = \{ z \in M \mid G_z \in (H) \},\$$
$$M^H = \{ z \in M \mid H \subset G_z \},\$$
$$M_H = \{ z \in M \mid H = G_z \}$$

are submanifolds.

 M_H is open in M^H .

 $m \in M$ is regular if $\exists U \ni m$ such that dim $\mathcal{O}_z =$ dim $\mathcal{O}_m, \forall z \in U$. **Principal Orbit Theorem:** M connected. The subset M^{reg} is connected, open, and dense in M. M/G contains only one principal orbit type, which is a connected open and dense subset of it.

The Stratification Theorem: Let M be a smooth manifold and G a Lie group acting properly on it. The connected components of the orbit type manifolds $M_{(H)}$ and their projections onto orbit space $M_{(H)}/G$ constitute a Whitney stratification of M and M/G, respectively. This stratification of M/G is minimal among all Whitney stratifications of M/G.

G-Codostribution Theorem: Let *G* be a Lie group acting properly on the smooth manifold *M* and $m \in M$ a point with isotropy subgroup $H := G_m$. Then

$$\left(\left(T_m(G\cdot m)\right)^\circ\right)^H = \left\{\mathbf{d}f(m) \mid f \in C^\infty(M)^G\right\}.$$

SIMPLE EXAMPLES

• S^1 acting on \mathbb{R}^2

Since S^1 is Abelian we do not distinguish between orbit types and isotropy types, that is, $\mathbb{R}^2_{(H)} = \mathbb{R}^2_H$ for any isotropy group H of this action.

If $\mathbf{x} \neq \mathbf{0}$ then $S_{\mathbf{x}}^1 = 1$ and $S^1 \cdot \mathbf{x}$ is the circle centered at the origin of radius $\|\mathbf{x}\|$. The slice is the ray through 0 and \mathbf{x} . $(\mathbb{R}^2)^{reg} = \mathbb{R}^2 \setminus \{\mathbf{0}\}$, which is open, connected, dense. $\mathbb{R}_1^2 = (\mathbb{R}^2)^{reg}$ and $(\mathbb{R}^2)^{reg}/S^1 =]0, \infty[$. If x = 0, then $S_0^1 = S^1$. The slice is \mathbb{R}^2 . $\mathbb{R}_0^2 = \{0\}$ and $\mathbb{R}_0^2/S^1 = \{0\}$.

Finally $\mathbb{R}^2/S^1 = [0, \infty[.$

• SO(3) acting on \mathbb{R}^3

Since SO(3) is non-Abelian, there is a distinction between orbit and isotropy types.

Since every rotation has an axis, if $\mathbf{x} \neq \mathbf{0}$ the isotropy subgroup SO(3)_x = $S^1(\mathbf{x})$, the circle representing the rotations with axis \mathbf{x} . So $(\mathbb{R}^3)^{reg} = \mathbb{R}^3 \setminus \{\mathbf{0}\}$.

The orbit $SO(3) \cdot x$ is the sphere centered at the origin with radius ||x||. The slice at x is the ray connecting the origin to x.

 $(\mathbb{R}^3)_{S^1(\mathbf{x})}$ is the set of points in \mathbb{R}^3 which have the same istropy group $S^1(\mathbf{x})$, so it is equal to the line through the origin and \mathbf{x} with the origin eliminated. It is disconnected and *not* SO(3)-invariant.

 $(\mathbb{R}^3)_{(S^1(\mathbf{x}))}$ is the set of points in \mathbb{R}^3 which have the istropy group $S^1(\mathbf{x})$ conjugate to $S^1(\mathbf{x})$. But any two rotations are conjugate, so $(\mathbb{R}^3)_{(S^1(\mathbf{x}))} = \mathbb{R}^3 \setminus \{\mathbf{0}\}$, which

is again equal in this case to $(\mathbb{R}^3)^{reg}$. This is connected, open, dense. $(\mathbb{R}^3)_{(S^1(\mathbf{x}))}/SO(3) =]0, \infty[.$

If x = 0, the slice is \mathbb{R}^3 , $SO(3)_0 = SO(3)$, $(\mathbb{R}^3)_{SO(3)} = (\mathbb{R}^3)_{(SO(3))} = \{0\}$, and $(\mathbb{R}^3)_{(SO(3))} = \{0\}/SO(3) = \{0\}$.

Finally $\mathbb{R}^3/SO(3) = [0, \infty[.$

• Semidirect products

 ${\cal V}$ vector space, ${\cal G}$ Lie group

 $\sigma: G \to \mathsf{GL}(V)$ representation

 $\sigma' : \mathfrak{g} \to \mathfrak{gl}(V)$ induced Lie algebra representation:

$$\xi \cdot v := \xi_V(v) := \sigma'(\xi)v := \frac{d}{dt}\Big|_{t=0} \sigma(\exp t\xi)v$$

 $S := G \otimes V$ semidirect product: underlying manifold is $G \times V$, multiplication

$$(g_1, v_1)(g_2, v_2) := (g_1g_2, v_1 + \sigma(g_1)v_2)$$

for $g_1, g_2 \in G$ and $v_1, v_2 \in V$, identity element is (e, 0)and $(g, v)^{-1} = (g^{-1}, -\sigma(g^{-1})v)$.

Note that V is a normal subgroup of S and that S/V = G.

Let \mathfrak{g} be the Lie algebra of G and let $\mathfrak{s} := \mathfrak{g} \otimes V$ be the Lie algebra of S; it is the semidirect product of \mathfrak{g} with V using the representation σ' and its underlying vector space is $\mathfrak{g} \times V$. The Lie bracket on \mathfrak{s} is given by

$$[(\xi_1, v_1), (\xi_2, v_2)] = ([\xi_1, \xi_2], \sigma'(\xi_1)v_2 - \sigma'(\xi_2)v_1)$$

for $\xi_1, \xi_2 \in \mathfrak{g}$ and $v_1, v_2 \in V$.

Identify \mathfrak{s}^* with $\mathfrak{g}^* \times V^*$ by using the duality pairing on each factor.

Adjoint action of S on \mathfrak{s} :

$$\operatorname{Ad}_{(g,u)}(\xi,v) = \left(\operatorname{Ad}_g \xi, \sigma(g)v - \sigma'(\operatorname{Ad}_g \xi)u\right),$$

for $(g,u) \in S, (\xi,v) \in \mathfrak{s}.$

Coadjoint action of S on \mathfrak{s}^* :

$$\operatorname{Ad}_{(g,u)^{-1}}^*(\nu,a) = \left(\operatorname{Ad}_{g^{-1}}^*\nu + (\sigma'_u)^*\sigma_*(g)a, \sigma_*(g)a\right),$$

for $(g,u) \in S$, $(\nu,a) \in \mathfrak{s}^*$, where

$$\sigma_*(g) := \sigma(g^{-1})^* \in \mathsf{GL}(V^*),$$

 $\sigma'_u : \mathfrak{g} \to V$ is the linear map given by $\sigma'_u(\xi) := \sigma'(\xi)u$ and $(\sigma'_u)^* : V^* \to \mathfrak{g}^*$ is its dual.

Clasification of orbits is a major problem!

Do the example of the coadjoint action of $SE(3) = SO(3) \otimes \mathbb{R}^3$. In this case:

 $\sigma : SO(3) \to GL(\mathbb{R}^3)$ is usual matrix multiplication on vectors, that is, $\sigma(A)\mathbf{v} := A\mathbf{v}$, for any $A \in SO(3)$ and $\mathbf{v} \in \mathbb{R}^3$.

Dualizing we get $\sigma(A)^*\Gamma = A^*\Gamma = A^{-1}\Gamma$, for any $\Gamma \in V^* \cong \mathbb{R}^3$.

The induced Lie algebra representation $\sigma' : \mathbb{R}^3 \cong \mathfrak{so}(3) \to \mathfrak{gl}(\mathbb{R}^3)$ is given by $\sigma'(\Omega)\mathbf{v} = \sigma'_{\mathbf{v}}\Omega = \Omega \times \mathbf{v}$, for any $\Omega, \mathbf{v} \in \mathbb{R}^3$.

Therefore, $(\sigma'_{\mathbf{v}})^* \Gamma = \mathbf{v} \times \Gamma$ and $\sigma'(\Omega)^* \Gamma = \Gamma \times \Omega$, for any $\mathbf{v} \in V \cong \mathbb{R}^3$, $\Omega \in \mathbb{R}^3 \cong \mathfrak{so}(3)$, and $\Gamma \in V^* \cong \mathbb{R}^3$.

We have $\operatorname{ad}_\Omega^*\Pi=\Pi imes\Omega$

So all formulas in this case become:

(A,a)(B,b) = (AB,Ab+a)

$$(A, a)^{-1} = (A^{-1}, -A^{-1}a)$$

$$[(\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}')] = (\mathbf{x} \times \mathbf{x}', \mathbf{x} \times \mathbf{y}' - \mathbf{x}' \times \mathbf{y})$$
$$\mathsf{Ad}_{(\mathbf{A}, \mathbf{a})}(\mathbf{x}, \mathbf{y}) = (\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} - \mathbf{A}\mathbf{x} \times \mathbf{a})$$
$$\mathsf{Ad}_{(\mathbf{A}, \mathbf{a})^{-1}}^*(\mathbf{u}, \mathbf{v}) = (\mathbf{A}\mathbf{u} + \mathbf{a} \times \mathbf{A}\mathbf{v}, \mathbf{A}\mathbf{v})$$

Let $\{e_1, e_2, e_3, f_1, f_2, f_3\}$ be an orthonormal basis of $\mathfrak{se}(3) = \mathbb{R}^3 \times \mathbb{R}^3$ such that $e_i = f_i$ for i = 1, 2, 3. The dual basis of $\mathfrak{se}(3)^*$ using the dot product is again $\{e_1, e_2, e_3, f_1, f_2, f_3\}$. Let $e \in \{e_1, e_2, e_3\}$ and $f \in \{f_1, f_2, f_3\}$ be arbitrary. What are the coadjoint orbits?

 $SE(3) \cdot (0,0) = (0,0)$. Since $SE(3)_{(0,0)} = SE(3)$ is not compact, the coadjoint action is not proper.

The orbit through (e, 0), $e \neq 0$, is

 $SE(3) \cdot (e, 0) = \{ (Ae, 0) | A \in SO(3) \} = S_{\|e\|}^2 \times \{0\},\$

the two-sphere of radius $\|\mathbf{e}\|$.

The orbit through (0,f), $f \neq 0$, is

$$\begin{aligned} \mathsf{SE}(3) \cdot (\mathbf{0}, \mathbf{f}) &= \{ \, (\mathbf{a} \times \mathbf{A}\mathbf{f}, \mathbf{A}\mathbf{f}) \mid \mathbf{A} \in \mathsf{SO}(3), \, \mathbf{a} \in \mathbb{R}^3 \, \} \\ &= \{ \, (\mathbf{u}, \mathbf{A}\mathbf{f}) \mid \mathbf{A} \in \mathsf{SO}(3), \, \mathbf{u} \perp \mathbf{A}\mathbf{f} \, \} = TS_{\|\mathbf{f}\|}^2, \end{aligned}$$

the tangent bundle of the two-sphere of radius ||f||; note that the vector part is the first component. We can think of it also as $T^*S^2_{||f||}$.

The orbit through (e, f), where $e \neq 0, f \neq 0$, equals

 $\mathsf{SE}(3) \cdot (e, f) = \{ (Ae + a \times Af, Af) \mid A \in \mathsf{SO}(3), a \in \mathbb{R}^3 \}.$

To get a better description of this orbit, consider the smooth map

$$\varphi : (\mathbf{A}, \mathbf{a}) \in \mathsf{SE}(\mathsf{3}) \mapsto \left(\mathbf{A}\mathbf{e} + \mathbf{a} \times \mathbf{A}\mathbf{f} - \frac{\mathbf{e} \cdot \mathbf{f}}{\|\mathbf{f}\|^2} \mathbf{A}\mathbf{f}, \mathbf{A}\mathbf{f} \right) \in TS^2_{\|\mathbf{f}\|},$$

which is right invariant under the isotropy group

$$\mathsf{SE}(3)_{(e,f)} = \{ (B,b) \mid Be + b \times f = e, Bf = f \}$$

and induces hence a diffeomorphism $\overline{\varphi}$: SE(3)/SE(3)_(e,f) \rightarrow $TS^2_{\|\mathbf{f}\|}$. The orbit through (e, f) is diffeomorphic to SE(3)/SE(3)_(e,f) by the diffeomorphism

$$(A,a)\mapsto \mathsf{Ad}^*_{(A,a)^{-1}}(e,f).$$

Composing these two maps and identifying TS^2 and T^*S^2 by the natural Riemannian metric on S^2 , we get the diffeomorphism $\Phi : SE(3) \cdot (\mathbf{e}, \mathbf{f}) \to T^*S^2_{\|\mathbf{f}\|}$ given by

$$\Phi(\mathsf{Ad}^*_{(\mathbf{A},\mathbf{a})^{-1}}(\mathbf{e},\mathbf{f})) = \left(\mathbf{A}\mathbf{e} + \mathbf{a} \times \mathbf{A}\mathbf{f} - \frac{\mathbf{e} \cdot \mathbf{f}}{\|\mathbf{f}\|^2}\mathbf{A}\mathbf{f}, \mathbf{A}\mathbf{f}\right)$$

Thus this orbit is also diffeomorphic to $T^*S^2_{\|\mathbf{f}\|}$.

• SE(3) acting on \mathbb{R}^3

This action is proper: $(A, a) \cdot u := Au + a$. It is not a representation. The orbit through the origin is \mathbb{R}^3 , $SE(3)_0 = SO(3)$.

This action is transitive: given $\mathbf{u} \in \mathbb{R}^3$ we have $(\mathbf{I}, \mathbf{0}) \cdot \mathbf{u} = \mathbf{u}$. So there is only one single orbit which is \mathbb{R}^3 .

EXAMPLE

 \bullet Consider \mathbb{R}^6 with the bracket

$$\{f,g\} = \sum_{i=1}^{3} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} \right)$$

• S^1 -action given by

$$\Phi: \begin{array}{ccc} S^{1} \times \mathbb{R}^{6} & \longrightarrow & \mathbb{R}^{6} \\ (e^{i\phi}, \, (\mathbf{x}, \, \mathbf{y})) & \longmapsto & (R_{\phi}\mathbf{x}, \, R_{\phi}\mathbf{y}) \end{array}$$

• Hamiltonian of the spherical pendulum

$$h = \frac{1}{2} \langle y, y \rangle + \langle x, e_3 \rangle$$

• Impose constraint $\langle x,x\rangle=\mathbf{1}$

• Angular momentum: $\mathbf{J}(\mathbf{x}, \mathbf{y}) = x_1y_2 - x_2y_1$.

Hilbert-Weyl Theorem: $H \to \operatorname{Aut}(V)$ representation, H compact Lie group. Then the algebra $\mathcal{P}(V)^H$ of Hinvariant polynomials on V is finitely generated, i.e., $\forall P \in \mathcal{P}(V)^H, \exists k \in \mathbb{N}, \pi_1, \dots, \pi_k \in \mathcal{P}(V)^H, \hat{P} \in \mathbb{R}[X_1, \dots, X_k]$ s.t. $P = \hat{P} \circ (\pi_1, \dots, \pi_k)$. Minimal set is a **Hilbert basis**.

Hilbert basis of the algebra of S^1 -invariant polynomials on \mathbb{R}^6 is given by

Semialgebraic relations

$$\sigma_4^2 + \sigma_6^2 = \sigma_5(\sigma_3 - \sigma_2^2), \qquad \sigma_3 \ge 0, \qquad \sigma_5 \ge 0$$

Hilbert map $\pi : v \in V \mapsto (\pi_1(v), \dots, \pi_k(v)) \in \mathbb{R}^k$ separates *H*-orbits. So $V/H \cong$ range (π) .

Schwarz Theorem: The map $f \in C^{\infty}(\mathbb{R}^k) \mapsto f \circ (\pi_1, \dots, \pi_k)$ $\in C^{\infty}(V)^H$ is surjective.

Mather Theorem: The quotient presheaf of smooth functions on V/H is isomorphic to the presheaf of Whitney smooth functions on $\pi(V)$ induced by the sheaf of smooth functions on \mathbb{R}^k .

Tarski-Seidenberg Theorem: Since π is a polynomial map, range $(\pi) \subset \mathbb{R}^k$ is semi-algebraic.

Theorem: Every semi-algebraic set admits a canonical Whitney stratification into a finite number of semialgebraic subsets.

Bierstone Theorem: This canonical stratification of $\pi(V)$ coincides with the stratification of V/H into orbit type manifolds.

These theorems can be used to explicitly describe quotient spaces of representations as semi-algebraic subsets of a (high dimensional) Euclidean space.

Return to our concrete case of the spherical pendulum.

The Hilbert map is given by

$$\begin{array}{cccc} \sigma & & & \mathbb{R}^6 \\ (\mathbf{x}, \mathbf{y}) & \longmapsto & (\sigma_1(\mathbf{x}, \mathbf{y}), \dots, \sigma_6(\mathbf{x}, \mathbf{y})). \end{array}$$

The S^1 -orbit space $T\mathbb{R}^3/S^1$ can be identified with the semialgebraic variety $\sigma(T\mathbb{R}^3) \subset \mathbb{R}^6$, defined by these relations.

 TS^2 is a submanifold of \mathbb{R}^6 given by $TS^2 = \{(\mathbf{x}, \, \mathbf{y}) \in \mathbb{R}^6 \mid \langle \mathbf{x}, \mathbf{x} \rangle = 1, \ \langle \mathbf{x}, \mathbf{y} \rangle = 0\}.$ $TS^2 \text{ is } S^1\text{-invariant.}$

 TS^2/S^1 can be thought of the semialgebraic variety $\sigma(TS^2)$ defined by the previous relations and

$$\sigma_5 + \sigma_1^2 = 1 \qquad \sigma_4 + \sigma_1 \sigma_2 = 0,$$

which allow us to solve for σ_4 and σ_5 , yielding

$$TS^{2}/S^{1} = \sigma(TS^{2}) = \{(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{6}) \in \mathbb{R}^{4} \mid \\ \sigma_{1}^{2}\sigma_{2}^{2} + \sigma_{6}^{2} = (1 - \sigma_{1}^{2})(\sigma_{3} - \sigma_{2}^{2}), \\ |\sigma_{1}| \leq 1, \sigma_{3} \geq 0\}.$$

The Poisson bracket is

$\left\{\cdot,\cdot\right\}^{TS^2/S^1}$	σ_1	σ_2	σ_{3}	σ_6
σ_1	0	$1 - \sigma_{1}^{2}$	$2\sigma_2$	0
σ_2	$-(1 - \sigma_1^2)$	0	$-2\sigma_1\sigma_3$	0
σ_3	$-2\sigma_2$	$2\sigma_1\sigma_3$	0	0
σ_6	0	0	0	0

The reduced Hamiltonian is

$$H = \frac{1}{2}\sigma_3 + \sigma_1$$

If $\mu \neq 0$ then $(TS^2)_{\mu} := \mathbf{J}^{-1}(\mu)/S^1$ appears as the graph of the smooth function

$$\sigma_3 = \frac{\sigma_2^2 + \mu^2}{1 - \sigma_1^2}, \qquad |\sigma_1| < 1.$$

The case $\mu = 0$ is singular and $(TS^2)_0 := J^{-1}(0)/S^1$ is not a smooth manifold.

ABSTRACT SYMMETRY REDUCTION

The case of general vector fields

M manifold

 $G\times M\to M$ smooth proper Lie group action

 $X \in \mathfrak{X}(M)^G$, G-equivariant vector field

 F_t flow of $X \in \mathfrak{X}(M)^G$

Law of conservation of isotropy:

 $M_H := \{m \in M \mid G_m = H\}$, the *H*-isotropy type submanifold, is preserved by F_t .

 M_H is, in general, not closed in M.

Properness of the action implies:

• G_m is compact

• the (connected components of) M_H are embedded submanifolds of M

N(H)/H (where N(H) denotes the normalizer of H in G) acts freely and properly on M_H .

 $\pi_H: M_H \to M_H/(N(H)/H)$ projection

 $i_H: M_H \hookrightarrow M$ inclusion

X induces a unique H-isotropy type reduced vector field X^H on $M_H/(N(H)/H)$ by

$$X^H \circ \pi_H = T\pi_H \circ X \circ i_H,$$

whose flow F_t^H is given by

$$F_t^H \circ \pi_H = \pi_H \circ F_t \circ i_H.$$

If G is compact and the action is linear, then the construction of $M_H/(N(H)/H)$ can be implemented in a very explicit and convenient manner by using the invariant polynomials of the action and the theorems of Hilbert and Schwarz-Mather.

The Hamiltonian case

 (M,ω) Poisson manifold, G connected Lie group with Lie algebra $\mathfrak{g}, G \times M \to M$ free proper symplectic action

 $\mathbf{J}: M \to \mathfrak{g}^*$ momentum map if $X_{\mathbf{J}\xi} = \xi_M$, where $\mathbf{J}^{\xi} := \langle \mathbf{J}, \xi \rangle$ and ξ_M is the infinitesimal generator given by $\xi \in \mathfrak{g}$

 $J: M \to \mathfrak{g}^* \text{ (infinitesimally) equivariant if } J(g \cdot m) =$ $Ad_{g^{-1}}^* J(m), \ \forall g \in G \ (T_m J(\xi_M(m))) = -ad_{\xi}^* J(m) \iff$ $J^{[\xi,\eta]} = \{J^{\xi}, J^{\eta}\}).$ **Proof** Take the derivative on M of the defining relation $\mathbf{J}^{\xi} := \langle \mathbf{J}, \xi \rangle$. Get: $\mathbf{d}\mathbf{J}^{\xi}(m)(v_m) = \langle T_m \mathbf{J}(v_m), \xi \rangle$. Hence

$$\left\{ \mathbf{J}^{\xi}, \mathbf{J}^{\eta} \right\}(m) = X_{\mathbf{J}^{\eta}} \left[\mathbf{J}^{\xi} \right](m) = \mathbf{d}\mathbf{J}^{\xi}(m) \left(X_{\mathbf{J}^{\eta}}(m) \right)$$
$$= \left\langle T_m \mathbf{J} \left(X_{\mathbf{J}^{\eta}}(m) \right), \xi \right\rangle = \left\langle T_m \mathbf{J} \left(\eta_M(m) \right), \xi \right\rangle.$$

On the other hand,

$$\mathbf{J}^{[\xi,\eta]}(m) = \langle \mathbf{J}(m), [\xi,\eta] \rangle = - \langle \mathbf{J}(m), \operatorname{ad}_{\eta} \xi \rangle$$
$$= - \langle \operatorname{ad}_{\eta}^{*} \mathbf{J}(m), \xi \rangle.$$

Noether's Theorem: The fibers of J are preserved by the Hamiltonian flows associated to G-invariant Hamiltonians. Equivalently, J is conserved along the flow of any G-invariant Hamiltonian.

Proof Let $h \in C^{\infty}(M)$ be *G*-invariant, so $h \circ \Phi_g = h$ for any $g \in G$. Take the derivative of this relation at g = eand get $\pounds_{\xi_M} h = 0$. But $\xi_M = X_{\mathbf{J}\xi}$ so we get $\{\mathbf{J}^{\xi}, h\} =$ $\langle \mathbf{d}h, X_{\mathbf{J}\xi} \rangle = \pounds_{\xi_M} h = 0$, which shows that $\mathbf{J}^{\xi} \in C^{\infty}(M)$ is constant on the flow of X_h for any $\xi \in \mathfrak{g}$, that is \mathbf{J} is conserved. \Box **Example: lifted actions on cotangent bundles.** Φ : $G \times Q \rightarrow Q$ Lie group action, $g \cdot q := \Phi(g,q)$. Its lift to the cotangent bundle T^*Q is

$$g \cdot \alpha_q := \Psi_g \alpha_q := T_{g \cdot q}^* \Phi_{g^{-1}}(\alpha_q).$$

 Ψ admits the following equivariant momentum map:

$$\langle \mathbf{J}(\alpha_q), \xi \rangle = \langle \alpha_q, \xi_Q(q) \rangle, \ \forall \alpha_q \in T^*Q, \ \forall \xi \in \mathfrak{g}.$$

Very important so we will give two complete proofs.

Proof 1 Recall that the cotangent lift of a diffeomorphism preserves the canonical one-form
$$\Theta$$
 on T^*Q . Hence $\Psi_{\exp t\xi}^* \Theta = \Theta$. Take $\frac{d}{dt}\Big|_{t=0}$ of this:
 $0 = \pounds_{\xi_{T^*Q}} \Theta = \mathbf{i}_{\xi_{T^*Q}} \mathrm{d}\Theta + \mathrm{d}\mathbf{i}_{\xi_{T^*Q}} \Theta = -\mathbf{i}_{\xi_{T^*Q}} \Omega + \mathrm{d}\langle\Theta,\xi_{T^*Q}\rangle$
which shows that a momentum map exists and is equal to $\mathbf{J}^{\xi} = \langle\Theta,\xi_{T^*Q}\rangle$. However, $\forall \alpha_q \in T^*Q$, we have $\mathbf{J}^{\xi}(\alpha_q) = \langle\Theta(\alpha_q),\xi_{T^*Q}(\alpha_q)\rangle = \langle\alpha_q,T_{\alpha_q}\pi_Q(\xi_{T^*Q}(\alpha_q))\rangle$.
But

$$T_{\alpha_q} \pi_Q \left(\xi_{T^*Q}(\alpha_q) \right) = T_{\alpha_q} \pi_Q \left(\frac{d}{dt} \Big|_{t=0} \Psi_{\exp t\xi}(\alpha_q) \right)$$

= $\frac{d}{dt} \Big|_{t=0} \left(\pi_Q \circ \Psi_{\exp t\xi} \right) (\alpha_q) = \frac{d}{dt} \Big|_{t=0} \left(\Phi_{\exp t\xi} \circ \pi_Q \right) (\alpha_q)$
= $\xi_Q(q),$

which proves the formula.

We prove G-equivariance. Let $g \in G$, $\xi \in \mathfrak{g}$, $\alpha_q \in T^*Q$.

$$\begin{aligned} \langle \mathbf{J}(g \cdot \alpha_q), \xi \rangle &= \left\langle g \cdot \alpha_q, \xi_Q(g \cdot q) \right\rangle \\ &= \left\langle \alpha_q, \left(T_{g \cdot q} \Phi_g^{-1} \circ \xi_Q \circ \Phi_g \right)(q) \right\rangle = \left\langle \alpha_q, \left(\mathsf{Ad}_{g^{-1}} \xi \right)_Q(q) \right\rangle \\ &= \left\langle \mathbf{J}(\alpha_q), \mathsf{Ad}_{g^{-1}} \xi \right\rangle = \left\langle \mathsf{Ad}_{g^{-1}}^* \mathbf{J}(\alpha_q), \xi \right\rangle. \end{aligned}$$

Proof 2 Define the momentum function of $X \in \mathfrak{X}(Q)$

 $\mathcal{P}:\mathfrak{X}(Q)\to C^{\infty}(T^*Q)$ by $\mathcal{P}(X)(\alpha_q):=\langle \alpha_q, X(q)\rangle$

for any $\alpha_q \in T_q^*Q$. In coordinates $\mathcal{P}(q^i, p_i) = X^j(p_i)p_j$.

 $\mathcal{L}(T^*Q)$ is the space of smooth functions linear on the fibers. In coordinates $F \in \mathcal{L}(T^*Q) \iff F(q^i, p_i) = X^j(q^i)p_j$ for some functions X^j . If $H(q^i, p_i) = Y^j(q^i)p_j$,

$$\{F, H\}(q^{i}, p_{i}) = \frac{\partial F}{\partial q^{j}} \frac{\partial H}{\partial p_{j}} - \frac{\partial H}{\partial q^{j}} \frac{\partial F}{\partial p_{j}}$$
$$= \frac{\partial X^{i}}{\partial q^{j}} p_{i} Y^{k} \delta^{j}_{k} - \frac{\partial Y^{i}}{\partial q^{j}} p_{i} X^{k} \delta^{j}_{k}$$
$$= \left(\frac{\partial X^{i}}{\partial q^{j}} p_{i} Y^{j} - \frac{\partial Y^{i}}{\partial q^{j}} p_{i} X^{j}\right) p_{i}$$

so $\mathcal{L}(T^*Q)$ is a Lie subalgebra of $C^{\infty}(T^*Q)$.

Momentum Commutator Lemma: The Lie algebras (i) $(\mathfrak{X}(Q), [\cdot, \cdot])$ of vector fields on Q(ii) Hamiltonian vector fields X_F on T^*Q with $F \in \mathcal{L}(T^*Q)$ are isomorphic. Each of these Lie algebras is antiisomorphic to $(\mathcal{L}(T^*Q), \{\cdot, \cdot\})$. In particular, we have

 $\{\mathcal{P}(X), \mathcal{P}(Y)\} = -\mathcal{P}([X, Y]).$

Proof \mathcal{P} : $\mathfrak{X}(Q) \to \mathcal{L}(T^*Q)$ is linear and satisfies the relation above because

$$[X,Y]^{i} = \frac{\partial Y^{i}}{\partial q^{j}} X^{j} - \frac{\partial X^{i}}{\partial q^{j}} Y^{j}$$

implies

$$-\mathcal{P}([X,Y]) = \left(\frac{\partial X^{i}}{\partial q^{j}}p_{i}Y^{j} - \frac{\partial Y^{i}}{\partial q^{j}}p_{i}X^{j}\right)p_{i} = \{\mathcal{P}(X), \mathcal{P}(Y)\}$$

as we saw above. So, \mathcal{P} is a Lie algebra anti-homomorphism.

$$\mathcal{P}(X) = 0 \iff \mathcal{P}(X)(\alpha_q) := \langle \alpha_q, X(q) \rangle, \forall \alpha_q \in T^*Q \iff X(q) = 0, \forall q \in Q, \text{ so } \mathcal{P} \text{ is injective.}$$

For each $F \in \mathcal{L}(T^*Q)$, define $X(F) \in \mathfrak{X}(Q)$ by

$$\langle \alpha_q, X(F)(q) \rangle := F(\alpha_q).$$

Then $\mathcal{P}(X(F)) = F$, so \mathcal{P} is also surjective.

We know that $F \mapsto X_F$ is a Lie algebra anti-homomorphism (by the Jacobi identity for $\{\cdot, \cdot\}$) from $(\mathcal{L}(T^*Q), \{\cdot, \cdot\})$ to $(\{X_F \mid F \in \mathcal{L}(T^*Q)\}, [\cdot, \cdot])$. This map is surjective by definition. Moreover, if $X_F = 0$ then F is constant on T^*Q , hence equal to zero becuase F is linear on the fibers. \Box

If $X \in \mathfrak{X}(Q)$ has flow φ_t , then the flow of $X_{\mathcal{P}(X)}$ on T^*Q is $T^*\varphi_{-t}$. Call $X' := X_{\mathcal{P}(X)}$ the **cotangent lift** of X.

Proof $\pi_Q : T^*Q \to Q$ cotangent bundle projection. Differentiate $\pi_Q \circ T^*\varphi_{-t} = \varphi_t \circ \pi_Q$ at t = 0 and get

 $T\pi_Q \circ Y = X \circ \pi_Q$, where $Y(\alpha_q) := \frac{d}{dt}\Big|_{t=0} T^* \varphi_{-t}(\alpha_q)$

So, $T^*\varphi_{-t}$ is the flow of Y, by construction. Since $T^*\varphi_{-t}$ preserves the canonical one-form $\Theta \in \Omega^1(T^*Q)$, it follows that $\pounds_Y \Theta = 0$, hence

$$i_Y \Omega = -i_Y d\Theta = di_Y \Theta - \pounds_Y \Theta = di_Y \Theta$$

By definition of Θ , we have

$$\mathbf{i}_Y \Theta(\alpha_q) = \langle \Theta(\alpha_q), Y(\alpha_q) \rangle = \langle \alpha_q, T_{\alpha_q} \pi_Q(Y(\alpha_q)) \rangle$$
$$= \langle \alpha_q, X(q) \rangle = \mathcal{P}(X)(\alpha_q) \iff \mathbf{i}_Y \Theta = \mathcal{P}(X),$$

that is,
$$i_Y \Omega = d\mathcal{P}(X) \iff Y = X_{\mathcal{P}(X)}$$
. \Box
Note:

$$[X_{\mathcal{P}(X)}, X_{\mathcal{P}(Y)}] = -X_{\{\mathcal{P}(X), \mathcal{P}(Y)\}} = -X_{-\mathcal{P}([X,Y])} = X_{\mathcal{P}([X,Y])}$$

 \mathfrak{g} acts on the left on Q, so it acts on T^*Q by $\xi_{T^*Q} := X_{\mathcal{P}(\xi_Q)}$. This \mathfrak{g} -action on T^*Q is Hamiltonian with infinitesimally equivariant momentum map $\mathbf{J} : P \to \mathfrak{g}^*$ given by

$$\langle \mathbf{J}(\alpha_q), \xi \rangle = \langle \alpha_q, \xi_Q(q) \rangle = \mathcal{P}(\xi_Q)(\alpha_q)$$

If G, with Lie algebra \mathfrak{g} , acts on Q and hence on T^*Q by cotangent lift, then **J** is equivariant.

In coordinates, $\xi_Q^i(q^j) = \xi^a A_a^i(q^j) \Rightarrow J_a \xi^a = p_i \xi_Q^i = p_i A_a^i \xi^a$, i.e.,

$$J_a(q^j, p_j) = p_i A_a^i(q^j)$$

Proof For Lie group actions, the theorem follows directly from the previous one, because the infinitesimal generator is given by $\xi_{T^*Q} := X_{\mathcal{P}(\xi_Q)}$, so the momentum map exists and is given by $\mathbf{J}^{\xi} = \mathcal{P}(\xi_Q)$ for all $\xi \in \mathfrak{g}$.

For Lie algebra actions we need to check first that the cotangent lift gives a canonical action. So, for $\xi, \eta \in \mathfrak{g}$,

$$\xi_{T^*Q}[\{F,H\}] = X_{\mathcal{P}(\xi_Q)}[\{F,H\}] = \left\{ X_{\mathcal{P}(\xi_Q)}[F],H \right\} + \left\{ F, X_{\mathcal{P}(\xi_Q)}[H] \right\} = \left\{ \xi_{T^*Q}[F],H \right\} + \left\{ F, \xi_{T^*Q}[H] \right\}$$

Done!

Remember that the momentum map $\mathbf{J} : T^*Q \to \mathfrak{g}^*$ is given by $\mathbf{J}^{\xi} = \mathcal{P}(\xi_Q)$ for any $\xi \in \mathfrak{g}$.

Recall the formula $[\xi, \eta]_Q = -[\xi_Q, \eta_Q]$. Then

$$\begin{aligned} \mathbf{J}^{[\xi,\eta]} &= \mathcal{P}([\xi,\eta]_Q) = -\mathcal{P}([\xi_Q,\eta_Q]) = \left\{ \mathcal{P}(\xi_Q), \mathcal{P}(\eta_Q) \right\} \\ &= \left\{ \mathbf{J}^{\xi}, \mathbf{J}^{\eta} \right\}, \end{aligned}$$

so J is infinitesimally equivariant.

Now assume that G has Lie algebra \mathfrak{g} and that G acts on Q and hence on T^*Q by cotangent lift. Remember: $g \cdot \alpha_q := T^*_{g \cdot q} \Phi_{g^{-1}} \alpha_q.$ We prove G-equivariance. Let $g \in G$, $\xi \in \mathfrak{g}$, $\alpha_q \in T^*Q$.

$$\begin{split} \langle \mathbf{J}(g \cdot \alpha_q), \xi \rangle &= \left\langle g \cdot \alpha_q, \xi_Q(g \cdot q) \right\rangle \\ &= \left\langle \alpha_q, \left(T_{g \cdot q} \Phi_g^{-1} \circ \xi_Q \circ \Phi_g \right)(q) \right\rangle \\ &= \left\langle \alpha_q, \left(\mathsf{Ad}_{g^{-1}} \xi \right)_Q(q) \right\rangle \\ &= \left\langle \mathbf{J}(\alpha_q), \mathsf{Ad}_{g^{-1}} \xi \right\rangle \\ &= \left\langle \mathsf{Ad}_{g^{-1}}^* \mathbf{J}(\alpha_q), \xi \right\rangle. \end{split}$$

If $\mathbf{J} : M \to \mathfrak{g}^*$ is an infinitesimally equivariant momentum map for a left Hamiltonian action of \mathfrak{g} on a Poisson manifold M, then \mathbf{J} is a Poisson map:

 $\mathbf{J}^{*}\{F_{1}, F_{2}\}_{+} = \{\mathbf{J}^{*}F_{1}, \mathbf{J}^{*}F_{2}\}, \forall F_{1}, F_{2} \in C^{\infty}(\mathfrak{g}^{*}).$

Proof Infinitesimal equivariance $\Leftrightarrow \{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\} = \mathbf{J}^{[\xi,\eta]}$. Let $m \in M, \ \xi = \delta F_1 / \delta \mu, \ \eta = \delta F_2 / \delta \mu, \ \mu := \mathbf{J}(m) \in \mathfrak{g}^*$. Then $\mathbf{J}^* \{F_1, F_2\}_+(m) = \left\langle \mu, \left[\frac{\delta F_1}{\delta \mu}, \frac{\delta F_2}{\delta \mu} \right] \right\rangle = \langle \mu, [\xi, \eta] \rangle$ $= \mathbf{J}^{[\xi, \eta]}(m) = \{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\}(m).$

But for any $m \in M$ an $v_m \in T_m M$, we have

$$\mathbf{d}(F_1 \circ \mathbf{J})(m)(v_m) = \mathbf{d}F_1(\mu) \left(T_m \mathbf{J}(v_m)\right)$$
$$= \left\langle T_m \mathbf{J}(v_m), \frac{\delta F_1}{\delta \mu} \right\rangle = \mathbf{d}\mathbf{J}^{\xi}(m)(v_m)$$

i.e., $F_1 \circ J$ and J^{ξ} have equal *m*-derivatives. The Poisson bracket depends only on the point values of the first derivatives and hence

$$\{F_1 \circ \mathbf{J}, F_2 \circ \mathbf{J}\}(m) = \{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\}(m).$$

Special case: $M = T^*G$, *G*-action on T^*G is the lift of left translation. We get: $\{F_1, F_2\}_+ \circ \mathbf{J}_L = \{F_1 \circ \mathbf{J}_L, F_2 \circ \mathbf{J}_L\}$. Restrict this relation to \mathfrak{g}^* and get $\{F_1, F_2\}_+(\mu) =$ $\{F_1 \circ \mathbf{J}_L, F_2 \circ \mathbf{J}_L\}(\mu)$. But $(F_i \circ \mathbf{J}_L)(\alpha_g) = F_i(T_e^*R_g\alpha_g) =:$ $(F_i)_R(\alpha_g)$, where $(F_i)_R : T^*G \to \mathfrak{g}^*$ is the right invariant extension of F_i to T^*G . So we get

$${F_1, F_2}_+(\mu) = \{(F_1)_R, (F_2)_R\}(\mu).$$

Identifying the set of functions on \mathfrak{g}^* with the set of right(left)-invariant functions on T^*G endows \mathfrak{g}^* with the \pm Lie-Poisson structure.

This is an *a posteriori* proof, i.e., one needs to already know the formula for the Lie-Poisson bracket.

Example: linear momentum. Take the phase space of the *N*-particle system, that is, $T^*\mathbb{R}^{3N}$. The additive group \mathbb{R}^3 acts on it by

 $\mathbf{v} \cdot (\mathbf{q}_i, \mathbf{p}^i) = (\mathbf{q}_i + \mathbf{v}, \mathbf{p}^i) \Rightarrow \xi_{\mathbb{R}^3}(\mathbf{q}_i) = (\mathbf{q}_1, \dots, \mathbf{q}_N; \xi, \dots, \xi).$

$$\begin{aligned} \mathbf{J} : & T^* \mathbb{R}^{3N} & \longrightarrow & \mathsf{Lie}(\mathbb{R}^3) \simeq \mathbb{R}^3 \\ & (\mathbf{q}_i, \, \mathbf{p}^i) & \longmapsto & \sum_{i=1}^N \mathbf{p}^i \end{aligned}$$

which is the classical linear momentum.

Indeed, by the general formula ofcotangent lifted actions, we have

$$\langle \mathbf{J}(\mathbf{q}_i,\mathbf{p}^i),\xi\rangle = \sum_{i=1}^N \mathbf{p}^i\cdot\xi.$$

Example: angular momentum. Let SO(3) act on \mathbb{R}^3 and then, by lift, on $T^*\mathbb{R}^3$, that is, $A \cdot (q, p) = (Aq, Ap)$. $J: T^*\mathbb{R}^3 \longrightarrow \mathfrak{so}(3)^* \simeq \mathbb{R}^3$ $(q, p) \longmapsto q \times p$.

which is the classical angular momentum.

Let's do it using the formula for cotangent lifted actions. If $\xi \in \mathbb{R}^3$, $\hat{\xi} \mathbf{v} := \xi \times \mathbf{v}$, for any $\mathbf{v} \in \mathbb{R}^3$, $\hat{\xi} \in \mathfrak{so}(3)$, then $\xi_{\mathbb{R}^3}(\mathbf{v}) = \frac{d}{dt}\Big|_{t=0} e^{t\hat{\xi}}\mathbf{v} = \hat{\xi}\mathbf{v} = \xi \times \mathbf{v}$

so that

$$\langle \mathbf{J}(\mathbf{q},\mathbf{p}),\xi\rangle = \mathbf{p}\cdot\xi_{\mathbb{R}^3}(\mathbf{q}) = \mathbf{p}\cdot(\xi\times\mathbf{q}) = (\mathbf{q}\times\mathbf{p})\cdot\xi$$

which shows that

 $\mathbf{J}(\mathbf{q},\mathbf{p}) = \mathbf{q} \times \mathbf{p}$

Example: Momentum map of the cotangent lifted left and right translations. Let *G* act on itself on the left: $L_g(h) := gh$. The infinitesimal generator of $\xi \in \mathfrak{g}$ is

$$\xi_G^L(h) := \frac{d}{dt}\Big|_{t=0} L_{\exp t\xi}(h) = \frac{d}{dt}\Big|_{t=0} R_h(\exp t\xi) = T_e R_h \xi$$

The infinitesimal generator of left translation is given by the tangent map of right translation: $\xi_G^L(h) = T_e R_h \xi$.

The momentum map of the cotangent lift of left translation $\mathbf{J}_L: T^*G \to \mathfrak{g}^*$ is hence given by

$$\langle \mathbf{J}_L(\alpha_g), \xi \rangle = \left\langle \alpha_g, \xi_G^L(g) \right\rangle = \langle \alpha_g, T_e R_g \xi \rangle = \langle T_e^* R_g \alpha_g, \xi \rangle$$

Hence $\mathbf{J}_L(\alpha_g) = T_e^* R_g \alpha_g$.

For the cotangent lift of right translation, $\xi_G^R(g) = T_e L_g \xi$ and $\mathbf{J}_R(\alpha_g) = T_e^* L_g \alpha_g$.

Example: symplectic linear actions. Let (V, ω) be a symplectic linear space and let G be a subgroup of the linear symplectic group, acting naturally on V.

$$\langle \mathbf{J}(v), \xi \rangle = \frac{1}{2} \omega(\xi_V(v), v).$$

This ${\bf J}$ is not that of a cotangent lifted action.

Example: Cayley-Klein parameters and the Hopf fibration. Consider the natural action of SU(2) on \mathbb{C}^2 . The symplectic form on \mathbb{C}^2 is minus the imaginary part of the Hermitian inner product. Since this action is by isometries of the Hermitian metric, it is automatically symplectic and therefore has a momentum map $J: \mathbb{C}^2 \to \mathfrak{su}(2)^*$ given, as above, by

$$\langle \mathbf{J}(z,w),\xi\rangle = \frac{1}{2}\omega\left(\xi(z,w)^{\mathsf{T}},(z,w)^{\mathsf{T}}\right), \quad z,w\in\mathbb{C},\ \xi\in\mathfrak{su}(2).$$

The Lie algebra $\mathfrak{su}(2)$ of SU(2) consists of 2 × 2 skew Hermitian matrices of trace zero. This Lie algebra is isomorphic to $\mathfrak{so}(3)$ and therefore to (\mathbb{R}^3 , ×) by the isomorphism given by

$$\mathbf{x} = (x^1, x^2, x^3) \in \mathbb{R}^3 \longmapsto$$
$$\widetilde{\mathbf{x}} := \frac{1}{2} \begin{bmatrix} -ix^3 & -ix^1 - x^2 \\ -ix^1 + x^2 & ix^3 \end{bmatrix} \in \mathfrak{su}(2).$$

Thus we have

$$[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}] = (\mathbf{x} \times \mathbf{y})^{\sim}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^3.$$

Other useful formulas are

det($2\tilde{x}$) = $||x||^2$ and trace($\tilde{x}\tilde{y}$) = $-\frac{1}{2}x \cdot y$. Identify $\mathfrak{su}(2)^*$ with \mathbb{R}^3 by the map $\mu \in \mathfrak{su}(2)^* \mapsto \check{\mu} \in \mathbb{R}^3$ defined by

$$\check{\mu} \cdot \mathbf{x} := -2 \langle \mu, \tilde{\mathbf{x}} \rangle$$

for any $\mathbf{x} \in \mathbb{R}^3$.

The symplectic form on \mathbb{C}^2 is given by minus the imaginary part of the Hermitian inner product. With these notations, the momentum map $\check{J}:\mathbb{C}^2\to\mathbb{R}^3$ can be explicitly computed in coordinates: for any $x\in\mathbb{R}^3$ we have

$$\begin{split} \tilde{\mathbf{J}}(z,w) \cdot \mathbf{x} &= -2\langle \mathbf{J}(z,w), \tilde{\mathbf{x}} \rangle \\ &= \frac{1}{2} \operatorname{Im} \left(\begin{bmatrix} -ix^3 & -ix^1 - x^2 \\ -ix^1 + x^2 & ix^3 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} \cdot \begin{bmatrix} z \\ w \end{bmatrix} \right) \\ &= -\frac{1}{2} (2\operatorname{Re}(w\overline{z}), 2\operatorname{Im}(w\overline{z}), |z|^2 - |w|^2) \cdot \mathbf{x}. \end{split}$$

Therefore

$$\check{\mathbf{J}}(z,w) = -\frac{1}{2}(2w\overline{z},|z|^2 - |w|^2) \in \mathbb{R}^3.$$

 \check{J} is a Poisson map from \mathbb{C}^2 , endowed with the canonical symplectic structure, to \mathbb{R}^3 , endowed with the + Lie Poisson structure. Therefore, $-\check{J}: \mathbb{C}^2 \to \mathbb{R}^3$ is a canonical map, if \mathbb{R}^3 has the - Lie-Poisson bracket relative to which the free rigid body equations are Hamiltonian. Pulling back the Hamiltonian

$$H(\mathbf{\Pi}) = \frac{1}{2} \mathbf{\Pi} \cdot \mathbb{I}^{-1} \mathbf{\Pi}, \qquad \mathbb{I}^{-1} \mathbf{\Pi} := \left(\frac{\Pi_1}{I_1}, \frac{\Pi_2}{I_2}, \frac{\Pi_3}{I_3} \right)$$

to \mathbb{C}^2 gives a Hamiltonian function (called collective) on \mathbb{C}^2 . $\mathbb{I} = \text{diag}(I_1, I_2, I_3)$ is the moment of inertia tensor written in a principal axis body frame of the free rigid body.

The classical Hamilton equations for this function are therefore projected by $-\breve{J}$ to the rigid body equations

$\dot{\Pi} = \Pi \times \mathbb{I}^{-1} \Pi.$

In this context, the variables (z, w) are called the **Cayley**-**Klein parameters**. They represent a first attempt to understand the rigid body equations as a Hamiltonian system, before the introduction of Poisson manifolds. In quantum mechanics, the same variables are called the **Kustaanheimo-Stiefel coordinates**. A similar construction was carried out in fluid dynamics making the Euler equations a Hamiltonian system relative to the socalled **Clebsch variables**.

Now notice that if

$$(z,w) \in S^3 := \{(z,w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\},\$$

then $\|-\check{\mathbf{J}}(z,w)\| = 1/2$, so that $-\check{\mathbf{J}}|_{S^3} : S^3 \to S^2_{1/2}$, where $S^2_{1/2}$ is the sphere in \mathbb{R}^3 of radius 1/2.

It is also easy to see that $-\check{\mathbf{J}}|_{S^3}$ is surjective and that its fibers are circles. Indeed, given $(x^1, x^2, x^3) = (x^1 + ix^2, x^3) = (re^{i\psi}, x^3) \in S^2_{1/2}$, the inverse image of this point is

$$- \check{\mathbf{J}}^{-1}(re^{i\psi}, x^3) = \left\{ \left(e^{i\theta} \sqrt{\frac{1}{2} + x^3}, e^{i\varphi} \sqrt{\frac{1}{2} - x^3} \right) \in S^3 \left| e^{i(\theta - \varphi + \psi)} = 1 \right\}$$

One recognizes now that $-\check{\mathbf{J}}|_{S^3}$: $S^3 \to S^2_{1/2}$ is the Hopf fibration. In other words:

the momentum map of the SU(2)-action on \mathbb{C}^2 , the Cayley-Klein parameters, the Kustaanheimo-Stiefel coordinates, and the family of Hopf fibrations on concentric three-spheres in \mathbb{C}^2 are **the same map**.

Constructive proof of the Lie-Poisson Reduction Theorem

• If $\xi \in \mathfrak{g}$, denote by $\xi_L \in \mathfrak{X}(G)$ the left invariant vector field whose value at e is ξ , i.e., $\xi_L(g) = T_e L_g(\xi)$, $\forall g \in G$.

$$[\xi_L,\eta_L] = [\xi,\eta]_L$$

by definition of the Lie bracket on \mathfrak{g} .

• Left trivialize T^*G :

 $\lambda : T^*G \ni \alpha_g \mapsto (g, T_e^*L_g\alpha_g) = (g, \mathbf{J}_R(\alpha_g)) \in G \times \mathfrak{g}^*$

 λ is an equivariant diffeomorphism relative to the lift of left translation on T^*G and the left G-action on $G \times \mathfrak{g}^*$ given by $g \cdot (h, \mu) := (gh, \mu)$. Therefore, $(T^*G)/G \cong$ $(G \times \mathfrak{g}^*)/G = \mathfrak{g}^*$ and hence $\mathbf{J}_R : T^*G \to \mathfrak{g}^*$ is the composition of this diffeomorphism with the canonical projection $T^*G \to (T^*G)/G$. Consequently, \mathfrak{g}^* inherits a Poisson structure, which we call, for the time being $\{\cdot, \cdot\}_{-}$, uniquely characterized by

 $\{F_1, F_2\}_- \circ \mathbf{J}_R = \{F_1 \circ \mathbf{J}_R, F_2 \circ \mathbf{J}_R\}, \ \forall F_1, F_2 \in C^{\infty}(\mathfrak{g}^*).$

GOAL: Compute this bracket.

To do this, it is enough to work with *linear* functions F_1, F_2 because the Poisson bracket depends only on the values of the differentials of the functions at each point. If F_i is linear, then $F_i(\mu) = \left\langle \mu, \frac{\delta F_i}{\delta \mu} \right\rangle$, for some constant element $\frac{\delta F_i}{\delta \mu} \in \mathfrak{g}$. If $\mu := T_e^* L_g \alpha_g \in \mathfrak{g}^*$, we get

$$(F_i)_L(\alpha_g) = F_i\left(T_e^*L_g\alpha_g\right) = \left\langle T_e^*L_g\alpha_g, \frac{\delta F_i}{\delta\mu} \right\rangle = \left\langle \alpha_g, T_eL_g\frac{\delta F_i}{\delta\mu} \right\rangle$$
$$= \left\langle \alpha_g, \left(\frac{\delta F_i}{\delta\mu}\right)_L(g) \right\rangle = \mathcal{P}\left(\left(\frac{\delta F_i}{\delta\mu}\right)_L\right)(\alpha_g)$$

Thus, we get

$$\{(F_1)_L, (F_2)_L\}(\mu) = \left\{ \mathcal{P}\left(\left(\frac{\delta F_1}{\delta \mu}\right)_L \right), \mathcal{P}\left(\left(\frac{\delta F_2}{\delta \mu}\right)_L \right) \right\}(\mu)$$
$$= -\mathcal{P}\left(\left[\left(\frac{\delta F_1}{\delta \mu}\right)_L, \left(\frac{\delta F_2}{\delta \mu}\right)_L \right] \right)(\mu)$$
$$= -\mathcal{P}\left(\left[\frac{\delta F_1}{\delta \mu}, \frac{\delta F_2}{\delta \mu} \right]_L \right)(\mu)$$
$$= -\left\langle \mu, \left[\frac{\delta F_1}{\delta \mu}, \frac{\delta F_2}{\delta \mu} \right] \right\rangle.$$

This theorem and general considerations implies the following.

Lie-Poisson reduction of dynamics

Assume that $H \in C^{\infty}(T^*G)$ is left(right)-invariant. Then $H^{\mp} := H|\mathfrak{g}^*$ satisfy $H = H^- \circ \mathbf{J}_R$ and $H = H^+ \circ \mathbf{J}_L$. The flow F_t on T^*G and the flow F_t^{\mp} of $X_{H^{\mp}}$ on \mathfrak{g}_{\mp}^* are related by

 $\mathbf{J}_R \circ F_t = F_t^- \circ \mathbf{J}_R, \qquad \mathbf{J}_L \circ F_t = F_t^+ \circ \mathbf{J}_L.$

Remember that J_L is conserved.

If $\alpha(t) \in T_{g(t)}G$ is an integral curve of X_H in T^*G , let $\mu(t) := \mathbf{J}_R(\alpha(t)), \ \nu(t) := \mathbf{J}_L(\alpha(t)) = \nu = \text{const. Then}$

$$\nu = \operatorname{Ad}_{g(t)^{-1}}^* \mu(t).$$

Reconstruction of dynamics

Differentiate in t the previous relation:

$$0 = \operatorname{Ad}_{g(t)^{-1}}^{*} \left(-\operatorname{ad}_{g(t)^{-1}\dot{g}(t)}^{*} \mu(t) + \frac{d\mu}{dt} \right)$$

However, $\mu(t)$ satisfies the Lie-Poisson equations

$$\frac{d\mu}{dt} = \operatorname{ad}_{\delta H^-/\delta\mu}^* \mu \iff \operatorname{ad}_{-g(t)^{-1}\dot{g}(t) + \delta H^-/\delta\mu}^* = 0$$

A sufficient condition for this to hold is $g(t)^{-1}\dot{g}(t) = \delta H^{-}/\delta \mu$. So, the integral curve of the unreduced system on $T^{*}G$ is found by solving:

$$\frac{d\mu(t)}{dt} = \operatorname{ad}_{\frac{\delta H^{-}}{\delta\mu}(t)}^{*} \mu(t), \quad \frac{dg(t)}{dt} = T_e L_{g(t)} \frac{\delta H^{-}}{\delta\mu}(t)$$

and putting

$$\alpha(t) := T_{g(t)}^* L_{g(t)^{-1}} \mu(t).$$

The expression of the push forward $\lambda_* X_H \in \mathfrak{X}(G \times \mathfrak{g})$ is

$$(\lambda_* X_H)(g,\mu) = \left(T_e L_g \frac{\delta H^-}{\delta \mu}, \mu, \operatorname{ad}_{\frac{\delta H^-}{\delta \mu}}^* \mu\right) \in T_g G \times T_\mu \mathfrak{g}^*.$$

Long direct proof.

More precise properties of the momentum map

• Freeness of the action is equivalent to the regularity of the momentum map: range $T_m \mathbf{J} = (\mathfrak{g}_m)^\circ$.

Proof: We have $T_m M = \{X_f(m) \mid f \in C^{\infty}(U)\}, U$ open neighborhood of m. For any $\xi \in \mathfrak{g}$ we have

$$\langle T_m \mathbf{J} \left(X_f(m) \right), \xi \rangle = \mathbf{d} \mathbf{J}^{\xi}(m) \left(X_f(m) \right) = \{ \mathbf{J}^{\xi}, f \}(m)$$
$$= -\mathbf{d} f(m) \left(X_{\mathbf{J}^{\xi}}(m) \right) = -\mathbf{d} f(m) \left(\xi_M(m) \right).$$

$$\xi \in \mathfrak{g}_m \iff \xi_M(m) = 0 \iff$$

$$df(m) \left(\xi_M(m)\right) = 0, \forall f \in C^{\infty}(U) \iff$$

$$\left\langle T_m \mathbf{J} \left(X_f(m) \right), \xi \right\rangle = 0, \forall f \in C^{\infty}(U) \iff$$

$$\xi \in (\operatorname{range} T_m \mathbf{J})^{\circ} \quad \Box$$

• ker
$$T_m \mathbf{J} = (\mathbf{g} \cdot m)^{\omega}$$
.

Proof: $v_m \in \ker T_m \mathbf{J}$ if and only if for all $\xi \in \mathfrak{g}$

$$0 = \langle T_m \mathbf{J}(v_m), \xi \rangle = \mathbf{d} \mathbf{J}^{\xi}(m)(v_m) = \omega(m) \left(X_{\mathbf{J}^{\xi}}(m), v_m \right)$$
$$= \omega(m) \left(\xi_M(m), v_m \right)$$
$$\iff v_m \in (\mathfrak{g} \cdot m)^{\omega} \qquad \Box$$

• Existence: The obstruction is the vanishing of the map

$$\begin{array}{ccccc}
\rho : & \mathfrak{g}/[\mathfrak{g},\mathfrak{g}] & \longrightarrow & H^1(M,\mathbb{R}) \\
& & [\xi] & \longmapsto & [\mathbf{i}_{\xi_M}\omega]
\end{array}$$

• Equivariance: When is $(\mathfrak{g}, [\cdot, \cdot]) \to (C^{\infty}(M), \{\cdot, \cdot\})$ defined by $\xi \mapsto \mathbf{J}^{\xi}, \xi \in \mathfrak{g}$, a Lie algebra homomorphism, that is,

$$\mathbf{J}^{[\xi,\,\eta]} = \{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\}, \quad \xi, \eta \in \mathfrak{g}.$$

Answer: if and only if

$$T_z \mathbf{J}(\xi_M(z)) = -\operatorname{ad}_{\xi}^* \mathbf{J}(z),$$

A momentum map that satisfies this relation in called **infinitesimally equivariant**.

Among all possible choices of momentum maps for a given action, there is at most one infinitesimally equivariant one. Sufficient conditions: Assume $H^1(\mathfrak{g}; \mathbb{R}) = H^2(\mathfrak{g}; \mathbb{R}) = 0$. By the Whitehead lemmas, this is the case if \mathfrak{g} is semisimple.

• J is G-equivariant when

$$\operatorname{Ad}_{g^{-1}}^* \circ \mathbf{J} = \mathbf{J} \circ \Phi_g$$

• If G is compact \mathbf{J} can be chosen G-equivariant

• If G is connected then infinitesimal equivariance is equivalent to equivariance.

Define the non-equivariance one-cocycle, or the the Souriau cocycle, associated to \mathbf{J} is the map

$$\sigma: G \longrightarrow \mathfrak{g}^*$$
$$g \longmapsto \mathbf{J}(\Phi_g(z)) - \mathrm{Ad}_{g^{-1}}^*(\mathbf{J}(z)).$$

Suppose that M is connected. Then:

(i) The definition of σ does not depend on the choice of $z \in M$. M connected is a crucial hypothesis.

(ii) The mapping σ is a \mathfrak{g}^* -valued one-cocycle on G with respect to the coadjoint representation of G on \mathfrak{g}^* .

Define the **affine action** of G on \mathfrak{g}^* with cocycle σ by

$$\Xi: \ \begin{array}{ccc} G \times \mathfrak{g}^* & \longrightarrow & \mathfrak{g}^* \\ (g, \mu) & \longmapsto & \operatorname{Ad}_{g^{-1}}^* \mu + \sigma(g). \end{array}$$

 \equiv determines a left action of G on \mathfrak{g}^* . The momentum map $\mathbf{J}: M \to \mathfrak{g}^*$ is equivariant with respect to the symplectic action Φ on M and the affine action \equiv on \mathfrak{g}^* .

The affine orbits \mathcal{O}_{μ} are also symplectic with *G*-invariant symplectic structure given by

$$\omega_{\mathcal{O}_{\mu}}^{\pm}(\nu)(\xi_{\mathfrak{g}^{*}}(\nu), \eta_{\mathfrak{g}^{*}}(\nu)) = \pm \langle \nu, [\xi, \eta] \rangle \mp \Sigma(\xi, \eta),$$

where the infinitesimal non-equivariance two-cocycle $\Sigma \in Z^2(\mathfrak{g},\mathbb{R})$ is given by

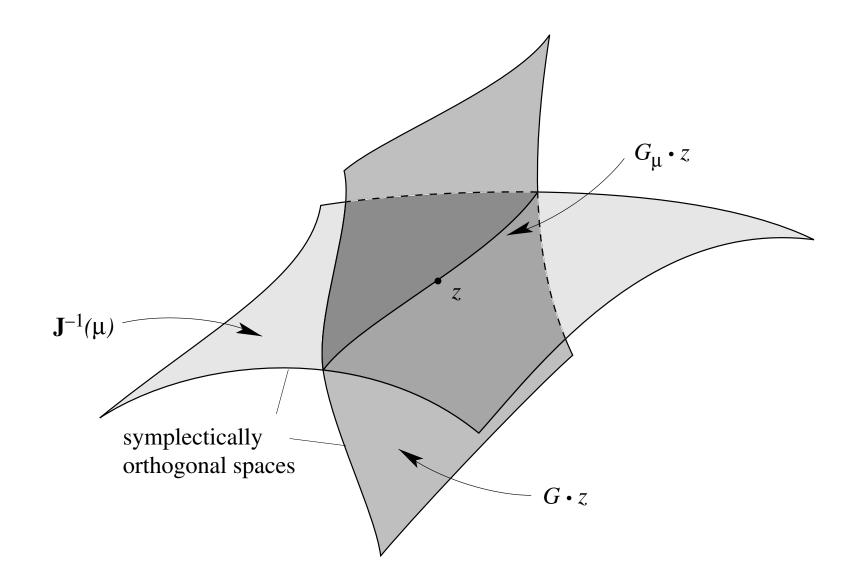
$$\Sigma: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathbb{R}$$
$$(\xi, \eta) \longmapsto \Sigma(\xi, \eta) = \mathrm{d}\hat{\sigma}_{\eta}(e) \cdot \xi,$$

with $\hat{\sigma}_{\eta} : G \to \mathbb{R}$ defined by $\hat{\sigma}_{\eta}(g) = \langle \sigma(g), \eta \rangle$.

Reduction Lemma:

 $\mathfrak{g}_{\mathbf{J}(m)} \cdot m = \mathfrak{g} \cdot m \cap \ker T_m \mathbf{J} = \mathfrak{g} \cdot m \cap (\mathfrak{g} \cdot m)^{\omega}.$

Proof: $\xi_M(m) \in \mathfrak{g} \cdot m \cap \ker T_m \mathbf{J} \iff \mathbf{0} = T_m \mathbf{J} \left(\xi_M(m) \right) =$ $- \operatorname{ad}_{\xi}^* \mathbf{J}(m) + \Sigma(\xi, \cdot) \iff \xi \in \mathfrak{g}_{\mathbf{J}(m)} \qquad \Box$



The geometry of the reduction lemma.

Momentum maps and isotropy type manifolds.

• $m \in M$. Then M_{G_m} is a symplectic submanifold of M.

Proof: By the Tube Theorem for proper actions, M_{G_m} is an embedded submanifold and $T_z M_{G_m} = T_z M^{G_m} = (T_z M)^{G_m}, \forall z \in M_{G_m}$. To show that $i^* \omega$ is a symplectic form, where $i : M_{G_m} \hookrightarrow M$, it suffices to show that $(i^* \omega)(z)$ is nondegenerate on $T_z M_{G_m}$, for all $z \in M_{G_m}$.

H compact Lie group and (V, ω) symplectic representation space. Then V^H is a symplectic subspace of *V*.

Let $\langle \langle , \rangle \rangle$ be a *H*-invariant inner product on *V*, possible by compactness of H (average some inner product). Define \mathbb{T} : $V \to V$ by $\langle\!\langle u, v \rangle\!\rangle = \omega(u, \mathbb{T}v)$ and note that it is a *H*-equivariant isomorphism. Therefore, $\mathbb{T}(V^H) \subset V^H$. Assume that $u \in V^H$ satisfies $\omega(u, v) = 0, \forall v \in V^H$. But then $0 = \omega(u, \mathbb{T}v) = \langle \langle u, v \rangle \rangle, \forall v \in V^H$. Put here v = uand then the positive definiteness of $\langle \langle , \rangle \rangle$ implies that u = 0.

 \bullet Let $M^m_{G_m}$ be the connected component of M_{G_m} containing m and

$$N(G_m)^m := \{ n \in N(G_m) \mid n \cdot z \in M_{G_m}^m \text{ for all } z \in M_{G_m}^m \}.$$

 $N(G_m)^m$ is a closed subgroup of $N(G_m)$ that contains the connected component of the identity. So it is also open and hence $\text{Lie}(N(G_m)^m) = \text{Lie}(N(G_m))$.

In addition, $(N(G_m)/G_m)^m = N(G_m)^m/G_m$ so that

 $\operatorname{Lie}\left(N(G_m)^m/G_m\right) = \operatorname{Lie}\left(N(G_m)/G_m\right).$

• $L^m := N(G_m)^m/G_m$ acts freely properly and canonically on $M^m_{G_m}$ by $\Psi(nG_m, z) := n \cdot z$.

Proof: The map Ψ is clearly well defined. It is easy to see it is a left action. It is also obvious that it is free. It is proper, because $N(G_m)^m$ is closed. Still need to show that it is canonical.

For any
$$l = nG_m \in L^m$$
 we have
 $\Psi_l^*(i^*\omega) = (i \circ \Psi_l)^*\omega = (\Phi_n \circ i)^*\omega = i^*\Phi_n^*\omega = i^*\omega.$

• The free proper canonical action of $L^m := N(G_m)^m/G_m$ on $M^m_{G_m}$ has a momentum map $\mathbf{J}_{L^m} : M^m_{G_m} \to (\text{Lie}(L^m))^*$ given by

$$\mathbf{J}_{L^m}(z) := \wedge (\mathbf{J}|_{M^m_{G_m}}(z) - \mathbf{J}(m)), \quad z \in M^m_{G_m}.$$

In this expression $\Lambda : (\mathfrak{g}_m^\circ)^{G_m} \to (\operatorname{Lie}(L^m))^*$ denotes the natural L^m -equivariant isomorphism given by

$$\left\langle \Lambda(\beta), \frac{d}{dt} \right|_{t=0} (\exp t\xi) G_m \right\rangle = \langle \beta, \xi \rangle,$$

for any $\beta \in (\mathfrak{g}_m^\circ)^{G_m}$, $\xi \in \operatorname{Lie}(N(G_m)^m) = \operatorname{Lie}(N(G_m))$.

• The non-equivariance one-cocycle $\tau : M^m_{G_m} \to (\text{Lie}(L^m))^*$ of the momentum map \mathbf{J}_{L^m} is given by the map

$$\tau(l) = \Lambda(\sigma(n) + n \cdot \mathbf{J}(m) - \mathbf{J}(m)).$$

CONVEXITY

 $J: M \to \mathfrak{g}^*$ coadjoint equivariant. *G*, *M* compact. The intersection of the image of J with a Weyl chamber is a compact and convex polytope. This polytope is referred to as the **momentum polytope**.

Delzant's theorem proves that the symplectic toric manifolds are classified by their momentum polytopes. A **Delzant polytope** in \mathbb{R}^n is a convex polytope that is also:

(i) Simple: there are n edges meeting at each vertex.

(ii) Rational: the edges meeting at a vertex p are of the form $p + tu_i$, $0 \le t < \infty$, $u_i \in \mathbb{Z}^n$, $i \in \{1, ..., n\}$.

(iii) Smooth: the vectors $\{u_1, \ldots, u_n\}$ can be chosen to be an integral basis of \mathbb{Z}^n .

Delzant's Theorem can be stated by saying that

{symplectic toric manifolds} \longrightarrow {Delzant polytopes} $(M, \omega, \mathbb{T}^n, \mathbf{J} : M \to \mathbb{R}^n) \longrightarrow \mathbf{J}(M)$

is a bijection.

Marsden-Weinstein Reduction Theorem

- $\mathbf{J}: M \to \mathfrak{g}^*$ equivariant (not essential)
- $\mu \in \mathbf{J}(M) \subset \mathfrak{g}^*$ regular value of \mathbf{J}
- G_{μ} -action on $\mathbf{J}^{-1}(\mu)$ is free and proper, where $G_{\mu} := \{g \in G \mid \operatorname{Ad}_{g}^{*} \mu = \mu\}$

then $(M_{\mu} := \mathbf{J}^{-1}(\mu)/G_{\mu}, \omega_{\mu})$ is symplectic:

$$\pi^*_{\mu}\omega_{\mu} = i^*_{\mu}\omega,$$

 $i_{\mu} : \mathbf{J}^{-1}(\mu) \hookrightarrow M$ inclusion, $\pi_{\mu} : \mathbf{J}^{-1}(\mu) \to \mathbf{J}^{-1}(\mu)/G_{\mu}$ projection. The flow F_t of X_h , $h \in C^{\infty}(M)^G$, leaves the connected components of $\mathbf{J}^{-1}(\mu)$ invariant and commutes with the *G*-action, so it induces a flow F_t^{μ} on M_{μ} by

$$\pi_{\mu} \circ F_t \circ i_{\mu} = F_t^{\mu} \circ \pi_{\mu}.$$

 F_t^{μ} is Hamiltonian on (M_{μ}, ω_{μ}) for the **reduced Hamil**tonian $h_{\mu} \in C^{\infty}(M_{\mu})$ given by

$$h_{\mu} \circ \pi_{\mu} = h \circ i_{\mu}.$$

Moreover, if $h, k \in C^{\infty}(M)^G$, then $\{h, k\}_{\mu} = \{h_{\mu}, k_{\mu}\}_{M_{\mu}}$.

Proof: Since π_{μ} is a surjective submersion, if ω_{μ} exists, it is uniquely determined by the condition $\pi^*_{\mu}\omega_{\mu} = i^*_{\mu}\omega$. This relation also defines ω_{μ} by:

$$\omega_{\mu}(\pi_{\mu}(z)) \left(T_{z}\pi_{\mu}(v), T_{z}\pi_{\mu}(w)\right) := \omega(z)(v, w),$$

for $z \in \mathbf{J}^{-1}(\mu)$ and $v, w \in T_{z}\mathbf{J}^{-1}(\mu).$

To see that this is a good definition of ω_{μ} , let

$$y = \Phi_g(z), \quad v' = T_z \Phi_g(v), \quad w' = T_z \Phi_g(w) T_z \mathbf{J}^{-1}(\mu),$$

where $g \in G_{\mu}$. If, in addition $T_{g \cdot z} \pi_{\mu}(v'') = T_{g \cdot z} \pi_{\mu}(v') = T_{z} \pi_{\mu}(v)$ and $T_{g \cdot z} \pi_{\mu}(w'') = T_{g \cdot z} \pi_{\mu}(w') = T_{z} \pi_{\mu}(w)$, then $v'' = v' + \xi_{M}(g \cdot z) \in T_{z} \mathbf{J}^{-1}(\mu)$ and $w'' = w' + \eta_{M}(g \cdot z) \in T_{z} \mathbf{J}^{-1}(\mu)$ for some $\xi, \eta \in \mathfrak{g}_{\mu}$ and hence

$$\begin{split} \omega(y)(v'',w'') &= \omega(y)(v',w') \quad \text{(by the reduction lemma)} \\ &= \omega(\Phi_g(z))(T_z\Phi_g(v),T_z\Phi_g(w)) \\ &= (\Phi_g^*\omega)(z)(v,w) \\ &= \omega(z)(v,w) \quad \text{(action is symplectic).} \end{split}$$

Thus ω_{μ} is well-defined. It is smooth since $\pi^*_{\mu}\omega_{\mu}$ is smooth. Since $d\omega = 0$, we get

$$\pi^*_{\mu} \mathbf{d}\omega_{\mu} = \mathbf{d}\pi^*_{\mu}\omega_{\mu} = \mathbf{d}i^*_{\mu}\omega = i^*_{\mu}\mathbf{d}\omega = 0.$$

Since π_{μ} is a surjective submersion, we conclude that $d\omega_{\mu} = 0$.

To prove nondegeneracy of ω_{μ} , suppose that

$$\omega_{\mu}(\pi_{\mu}(z))(T_{z}\pi_{\mu}(v),T_{z}\pi_{\mu}(w))=0$$

for all $w \in T_z(\mathbf{J}^{-1}(\mu))$. This means that

$$\omega(z)(v,w) = 0$$
 for all $w \in T_z(\mathbf{J}^{-1}(\mu)),$

i.e., that $v \in (T_z(\mathbf{J}^{-1}(\mu)))^{\omega} = T_z(G \cdot z)$ by the Reduction Lemma. Hence

$$v \in T_z(\mathbf{J}^{-1}(\mu)) \cap T_z(G \cdot z) = T_z(G_\mu \cdot z)$$

so that $T_z \pi_\mu(v) = 0$, thus proving nondegeneracy of ω_μ .

Let $Y \in \mathfrak{X}(M_{\mu})$ be the vector field whose flow is F_t^{μ} . Therefore, from $\pi_{\mu} \circ F_t \circ i_{\mu} = F_t^{\mu} \circ \pi_{\mu}$ it follows

$$T\pi_{\mu} \circ X_h = Y \circ T\pi_{\mu}$$
 on $\mathbf{J}^{-1}(\mu)$.

Also, $h_{\mu} \circ \pi_{\mu} = h \circ i_{\mu}$ implies that $dh_{\mu} \circ T\pi_{\mu} = dh$ on $J^{-1}(\mu)$. Therefore, on $J^{-1}(\mu)$ we get

$$\pi_{\mu}^{*} (\mathbf{i}_{Y} \omega_{\mu}) = \mathbf{i}_{X_{h}} \pi_{\mu}^{*} \omega_{\mu} = \mathbf{i}_{X_{h}} i_{\mu}^{*} \omega = i_{\mu}^{*} (\mathbf{i}_{X_{h}} \omega) = i_{\mu}^{*} \mathbf{d}h$$
$$= \mathbf{d}(h \circ i_{\mu}) = \mathbf{d}(h_{\mu} \circ \pi_{\mu}) = \pi_{\mu}^{*} \mathbf{d}h_{\mu}$$
$$= \pi_{\mu}^{*} (\mathbf{i}_{X_{h\mu}} \omega_{\mu}),$$

so $\mathbf{i}_Y \omega_\mu = \mathbf{i}_{X_{h\mu}} \omega_\mu$ since π_μ is a surjective submersion. Hence $Y = X_{h\mu}$ because ω_μ is nondegenerate. Finally, for $m \in \mathbf{J}^{-1}(\mu)$ we have

$$\{h_{\mu}, k_{\mu}\}_{M_{\mu}}(\pi_{\mu}(m)) = \omega_{\mu}(\pi_{\mu}(m)) \left(X_{h_{\mu}}(\pi_{\mu}(m)), X_{k_{\mu}}(\pi_{\mu}(m)) \right)$$

$$= \omega_{\mu}(\pi_{\mu}(m)) \left(T_{m}\pi_{\mu}(X_{h}(m)), T_{m}\pi_{\mu}(X_{k}(m)) \right)$$

$$= (\pi_{\mu}^{*}\omega_{\mu})(m) \left(X_{h}(m), X_{k}(m) \right)$$

$$= (i_{\mu}^{*}\omega)(m) \left(X_{h}(m), X_{k}(m) \right)$$

$$= \{h, k\}(m)$$

$$= \{h, k\}_{\mu}(\pi_{\mu}(m)),$$

which shows that $\{h_{\mu},k_{\mu}\}_{M_{\mu}}=\{h,k\}_{\mu}$.

Problems with the reduction procedure

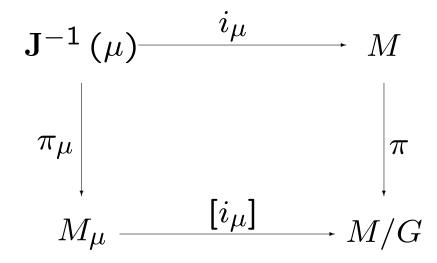
- Momentum map inexistent
- How does one recover the conservation of isotropy?
- M_{μ} is not a smooth manifold
- G is discrete so momentum map is zero
- M is not a symplectic but a Poisson manifold

ORBIT REDUCTION

Same set up as in the symplectic reduction theorem: M connected, G acting symplectically, freely, and properly on M with an equivariant momentum map $\mathbf{J}: M \to \mathfrak{g}^*$.

The connected components of the point reduced spaces M_{μ} can be regarded as the symplectic leaves of the Poisson manifold $(M/G, \{\cdot, \cdot\}_{M/G})$ in the following way. Form a map $[i_{\mu}] : M_{\mu} \to M/G$ defined by selecting an equivalence class $[z]_{G_{\mu}} \in M_{\mu}$ for $z \in \mathbf{J}^{-1}(\mu)$ and sending it to the class $[z]_{G} \in M/G$. This map is checked to be well-defined and smooth.

We then have the commutative diagram



One then checks that $[i_{\mu}]$ is a Poisson injective immersion. Moreover, the $[i_{\mu}]$ -images in M/G of the connected components of the symplectic manifolds (M_{μ}, Ω_{μ}) are its symplectic leaves. As sets,

$$[i_{\mu}] (M_{\mu}) = \mathbf{J}^{-1} (\mathcal{O}_{\mu}) / G,$$

where $\mathcal{O}_{\mu} \subset \mathfrak{g}^*$ is the coadjoint orbit through $\mu \in \mathfrak{g}^*$.

$$M_{\mathcal{O}_{\mu}} := \mathbf{J}^{-1} \left(\mathcal{O}_{\mu} \right) / G$$

is called the **orbit reduced space** associated to the orbit \mathcal{O}_{μ} . The smooth manifold structure (and hence the topology) on $M_{\mathcal{O}_{\mu}}$ is the one that makes

$$[i_{\mu}]: M_{\mu} \to M_{\mathcal{O}_{\mu}}$$

into a diffeomorphism.

An injectively immersed submanifold of S of Q is called an **initial submanifold** of Q if for any smooth manifold P, a map $g: P \to S$ is smooth if and only if $\iota \circ g: P \to Q$ is smooth, where $\iota: S \hookrightarrow Q$ is the inclusion.

Most prop. of submanifolds hold for initial submanifolds.

Symplectic Orbit Reduction Theorem

• The momentum map J is transverse to the coadjoint orbit \mathcal{O}_{μ} and hence $\mathbf{J}^{-1}(\mathcal{O}_{\mu})$ is an initial submanifold of M. Moreover, the projection $\pi_{\mathcal{O}_{\mu}} : \mathbf{J}^{-1}(\mathcal{O}_{\mu}) \to M_{\mathcal{O}_{\mu}}$ is a surjective submersion. • $M_{\mathcal{O}\mu}$ is a symplectic manifold with the symplectic form $\Omega_{\mathcal{O}\mu}$ uniquely characterized by the relation

$$\pi^*_{\mathcal{O}_{\mu}}\Omega_{\mathcal{O}_{\mu}} = \mathbf{J}^*_{\mathcal{O}_{\mu}}\omega^-_{\mathcal{O}_{\mu}} + i^*_{\mathcal{O}_{\mu}}\Omega,$$

where $\mathbf{J}_{\mathcal{O}_{\mu}}$ is the restriction of \mathbf{J} to $\mathbf{J}^{-1}(\mathcal{O}_{\mu})$ and $i_{\mathcal{O}_{\mu}}$: $\mathbf{J}^{-1}(\mathcal{O}_{\mu}) \hookrightarrow M$ is the inclusion.

• The map $[i_{\mu}]: M_{\mu} \to M_{\mathcal{O}_{\mu}}$ is a symplectic diffeomorphism.

• Let h be a G-invariant function on M and define \tilde{h} : $M/G \to \mathbb{R}$ by $h = \tilde{h} \circ \pi$. Then the Hamiltonian vector field X_h is also G-invariant and hence induces a vector field on M/G, which coincides with the Hamiltonian vector field $X_{\tilde{h}}$. Moreover, the flow of $X_{\tilde{h}}$ leaves the symplectic leaves $M_{\mathcal{O}_{\mu}}$ of M/G invariant. This flow restricted to the symplectic leaves is again Hamiltonian relative to the symplectic form $\Omega_{\mathcal{O}_{\mu}}$ and the Hamiltonian function $h_{\mathcal{O}_{\mu}}$ given by

$$h_{\mathcal{O}_{\mu}} \circ \pi_{\mathcal{O}_{\mu}} = h \circ i_{\mathcal{O}_{\mu}} \Longleftrightarrow h_{\mathcal{O}_{\mu}} = \tilde{h}|_{\mathcal{O}_{\mu}}.$$

• If $h, k \in C^{\infty}(M)^G$, then

$$\{h,k\}_{\mathcal{O}_{\mu}} = \{h_{\mathcal{O}_{\mu}},k_{\mathcal{O}_{\mu}}\}_{M_{\mathcal{O}_{\mu}}}.$$

This is a theorem in the Poisson category.

COTANGENT BUNDLE REDUCTION NOTATIONS AND DEFINITIONS

Given is a smooth free proper action $\Phi : G \times Q \to Q$ and then lift the action to T^*Q ; it preserves the one-form and has an equivarant momentum map $\mathbf{J} : T^*Q \to \mathfrak{g}^*$ given by

$$\langle \mathbf{J}(\alpha_q), \xi \rangle = \alpha_q \left(\xi_Q(q) \right), \text{ for all } \xi \in \mathfrak{g}.$$

A connection one-form $\mathcal{A} \in \Omega^1(Q; \mathfrak{g})$ on the principal bundle $\pi : Q \to Q/G$ satisfies

- $\mathcal{A}(q)\left(\xi_Q(q)\right) = \xi$ for all $\xi \in \mathfrak{g}$
- $\Phi_g^* \mathcal{A} = \operatorname{Ad}_g \circ \mathcal{A} \iff \mathcal{A}(g \cdot q)(g \cdot v_q) = \operatorname{Ad}_g (\mathcal{A}(q)(v_q))$

The horizontal bundle $H := \ker \mathcal{A}$; $TQ = H \oplus V$, where $V_q := \{\xi_Q(q) \mid \xi \in \mathfrak{g}\}$ is the **vertical space** at $q \in Q$. We have $T_q \Phi_g(H_q) = H_{g \cdot q}$ for all $g \in G$ and $q \in Q$. The horizontal bundle characterizes the connection.

The curvature $\mathcal{B} = \operatorname{Curv}_{\mathcal{A}} \in \Omega^2(Q; \mathfrak{g})$ of \mathcal{A} is defined by $\mathcal{B}(q)(u_q, v_q) := d\mathcal{A}(q) (\operatorname{Hor}_q u_q, \operatorname{Hor}_q v_q)$, where $\operatorname{Hor}_q u_q$ is the horizontal component of u_q . The **Cartan structure** equations state

 $\mathcal{B}(X,Y) = \mathbf{d}\mathcal{A}(X,Y) - [\mathcal{A}(X),\mathcal{A}(Y)] \text{ for all } X,Y \in \mathfrak{X}(Q).$

COTANGENT BUNDLE REDUCTION: EMBEDDING VERSION

What is $(T^*Q)_{\mu}$ concretely?

Form the left principal G_{μ} -bundle $\pi_{Q,G_{\mu}}$: $Q \to Q_{\mu}$:= Q/G_{μ} . The momentum map $\mathbf{J}^{\mu} : T^*Q \to \mathfrak{g}^*_{\mu}$ is

$$\mathbf{J}^{\mu}(\alpha_q) = \mathbf{J}(\alpha_q)|_{\mathfrak{g}_{\mu}}$$

Let $\mu' := \mu|_{\mathfrak{g}_{\mu}} \in \mathfrak{g}_{\mu}^*$. Notice that there is a natural inclusion of submanifolds

$$\mathbf{J}^{-1}(\mu) \subset (\mathbf{J}^{\mu})^{-1}(\mu').$$

Since the actions are free and proper, μ and μ' are regular values, so these sets are indeed smooth manifolds. Note that, by construction, μ' is G_{μ} -invariant.

There will be two key assumptions relevant to the embedding version of cotangent bundle reduction. Namely,

CBR1. In the above setting, assume there is a G_{μ} -invariant one-form α_{μ} on Q with values in $(\mathbf{J}^{\mu})^{-1}(\mu')$.

and the stronger condition

CBR2. Assume that α_{μ} in **CBR1** takes values in $\mathbf{J}^{-1}(\mu)$.

Then there is a unique two-form β_{μ} on Q_{μ} such that

$$\pi_{Q,G_{\mu}}^*\beta_{\mu} = \mathbf{d}\alpha_{\mu}.$$

Since $\pi_{Q,G_{\mu}}$ is a submersion, β_{μ} is closed (it need not be exact). Let

$$B_{\mu} = \pi^*_{Q_{\mu}} \beta_{\mu} \in \Omega^2(T^*Q_{\mu}),$$

where $\pi_{Q_{\mu}}$: $T^*Q_{\mu} \to Q_{\mu}$ is the cotangent bundle projection. Also, to avoid confusion with the canonical symplectic form Ω_{can} on T^*Q , we shall denote the canonical symplectic form on T^*Q_{μ} , the cotangent bundle of μ -shape space, by $\omega_{\rm can}$.

• If condition **CBR1** holds, then there is a symplectic embedding

$$\varphi_{\mu}: ((T^*Q)_{\mu}, \Omega_{\mu}) \to (T^*Q_{\mu}, \omega_{\operatorname{can}} - B_{\mu}),$$

onto a submanifold of T^*Q_{μ} covering the base Q/G_{μ} .

• This map φ_{μ} gives a symplectic diffeomorphism of $((T^*Q)_{\mu}, \Omega_{\mu})$ onto $(T^*Q_{\mu}, \omega_{can} - B_{\mu})$ if and only if $\mathfrak{g} = \mathfrak{g}_{\mu}$.

• If **CBR2** holds, then the image of φ_{μ} equals the vector subbundle $[T\pi_{Q,G_{\mu}}(V)]^{\circ}$ of $T^{*}Q_{\mu}$, where $V \subset TQ$ is the vector subbundle consisting of vectors tangent to the *G*orbits, that is, its fiber at $q \in Q$ equals $V_{q} = \{\xi_{Q}(q) \mid \xi \in \mathfrak{g}\}$, and $^{\circ}$ denotes the annihilator relative to the natural duality pairing between TQ_{μ} and $T^{*}Q_{\mu}$.

• Assume that $\mathcal{A} \in \Omega^1(Q; \mathfrak{g})$ is a connection on the principal bundle $\pi_{Q,G} : Q \to Q/G$. Then $\alpha_\mu(q) := \langle \mu, \mathcal{A}(q) \rangle = \mathcal{A}(q)^* \mu \in \Omega^1(Q)$ satisfies **CBR2**. This implies that B_μ is the pull back to T^*Q_μ of $d\alpha_\mu \in \Omega^2(Q)$, which equals the μ -component of the two form $\mathcal{B} + [\mathcal{A}, \mathcal{A}] \in \Omega^2(Q; \mathfrak{g})$, where \mathcal{B} is the curvature of \mathcal{A} .

COTANGENT BUNDLE REDUCTION: BUNDLE VERSION

Again we will utilize a choice of connection \mathcal{A} on the shape space bundle $\pi_{Q,G} : Q \to Q/G$. A key step in the argument is to utilize orbit reduction and the identification $(T^*Q)_{\mu} \cong (T^*Q)_{\mathcal{O}}$. Q/G is called the **shape space**.

The reduced space $(T^*Q)_{\mu}$ is a locally trivial fiber bundle over $T^*(Q/G)$ with typical fiber \mathcal{O} :

$$(T^*Q)_{\mu} \xrightarrow{\mathcal{O}} T^*(Q/G)$$

ASSOCIATED BUNDLES

G also acts on a manifold *V* on the left. Then $g \cdot (q, v) := (g \cdot q, g \cdot v)$ is a free proper action so form $P \times_G V := (P \times \times V)/G$. This is a locally trivial fiber bundle over Q/G all of whose fibers are diffeomorphic to *V*.

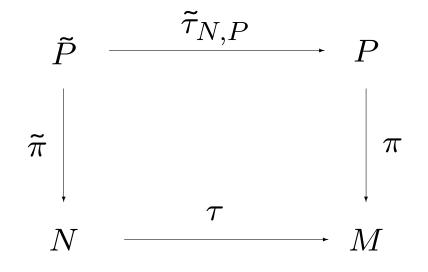
If V is a representation space of G, then $Q \times_G V \to Q/G$ is a vector bundle. In particular, if V is g or \mathfrak{g}^* and the Gaction is the adjoint or coadjoint action, then $\tilde{\mathfrak{g}} := Q \times_G \mathfrak{g}$ is the **adjoint bundle** and its dual $\tilde{\mathfrak{g}}^* := Q \times_G \mathfrak{g}^*$ is the **coadjoint bundle**. Unlike the connection form \mathcal{A} , the curvature drops to an adjoint bundle valued two-form $\overline{\mathcal{B}}$ on the base Q/G, namely,

 $\overline{\mathcal{B}}(\pi(q)) \left(T_q \pi(u_q), T_q \pi(v_q) \right) := [q, \mathcal{B}(q)(u_q, v_q)] \in \tilde{\mathfrak{g}}$

PULL BACK COMMUTES WITH ASSOCIATING

• $\pi: P \to M$ left principal *G*-bundle. $\tau: N \to M$ surjective submersion. Define the **pull back bundle** over *N* by

$$\tilde{P} := \{ (n,p) \in N \times P \mid \pi(p) = \tau(n) \}.$$



 $\tilde{\pi} : \tilde{P} \to N$ and $\tilde{\tau}_{N,P} : \tilde{P} \to P$ are the projections on the first and second factors. \tilde{P} is a smooth manifold of dimension dim P + dim N - dim M and the free G-action on P induces a free G-action on \tilde{P} given by

$$g \cdot (n,p) = (n,gp)$$

with respect to which, $\tilde{\pi}$ is the projection on the space of orbits.

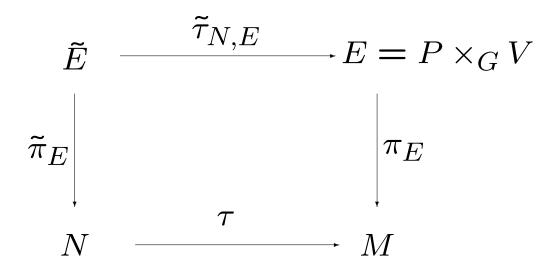
 \tilde{P} is a left principal *G*-bundle over *N* and the map $\tilde{\tau}_{N,P}$ is a submersion with fiber over the point $p \in P$ equal to

$$\tilde{\tau}_{N,P}^{-1}(p) = \{(n,p) \in N \times P \mid \pi(p) = \tau(n)\}$$
$$= \tau^{-1}(\pi(p)) \times \{p\} \subset \tilde{P}$$

and hence diffeomorphic to $\tau^{-1}(\pi(p))$.

Now suppose that there is a left action of G on a manifold V. There are two associated bundles that one can construct: $P \times_G V$ and $\tilde{P} \times_G V$. They are fiber bundles over M and N respectively, both with fibers diffeomorphic to V. The associated bundle $\tilde{P} \times_G V \to N$ is obtained from the principal bundle $\pi : P \to M$, the surjective submersion $\tau : N \to M$, and the *G*-manifold *V* by pull back and association.

These operations can be reversed. First one forms the associated bundle $\pi_E : [p, v] \in E := P \times_G V \mapsto \pi(p) \in M$ and then one pulls it back by the surjective submersion $\tau : N \to M$. One obtains the pull back bundle $\tilde{\pi}_E : \tilde{E} \to N$, whose fibers are all diffeomorphic to V, defined by the following commutative diagram



$$\begin{split} \tilde{E} &:= \{ (n, [p, v]) \mid \tau(n) = \pi_E([p, v]) = \pi(p) \} \\ \tilde{\pi}_E(n, [p, v]) &:= n, \ \tilde{\tau}_{N, E}(n, [p, v]) := [p, v]. \end{split}$$

The fibers of $\tilde{\tau}_{N, E}$ are equal to

$$\begin{aligned} \tilde{\tau}_{N,E}^{-1}([p,v]) &= \{ (n,[p,v]) \mid \tau(n) = \pi_E([p,v]) = \pi(p) \} \\ &= \tau^{-1}(\pi(p)) \times \{ [p,v] \} \simeq \tau^{-1}(\pi(p)). \end{aligned}$$

There is a canonical bundle isomorphism over ${\cal M}$

$$[(n,p),v] \in \tilde{P} \times_G V \longrightarrow (n,[p,v]) \in \tilde{E}.$$

STERNBERG SPACE

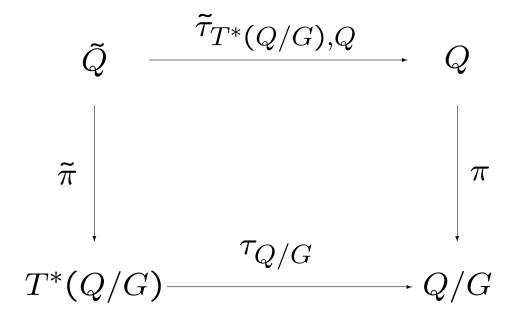
 $G \times Q \to Q$ free proper action, $\pi : Q \to Q/G$ $\mathcal{A} \in \Omega^1(Q; \mathfrak{g})$ connection, V(Q), H(Q) vertical and horizontal subbundles of TQ, $V_q(Q) = \ker T_q \pi$, $H_q(Q) = \ker \mathcal{A}(q)$, $TQ = V(Q) \oplus H(Q)$.

Pull back $\pi : Q \to Q/G$ by the cotangent bundle projection $\tau_{Q/G} : T^*(Q/G) \to Q/G$ to get the *G*-principal

bundle

$$\tilde{Q} = \{ (\alpha_{[q]}, q) \in T^*(Q/G) \times Q \mid [q] = \pi(q), q \in Q \}$$

over $T^*(Q/G)$ with fiber over $\alpha_{[q]}$ diffeomorphic to $\pi^{-1}([q])$. Recall that the *G*-action on \tilde{Q} is given by $g \cdot (\alpha_{[q]}, q) := (\alpha_{[q]}, g \cdot q)$ for any $g \in G$ and $(\alpha_{[q]}, q) \in \tilde{Q}$.



 \tilde{Q} is a vector bundle over Q which is isomorphic to the annihilator $V(Q)^{\circ} \subset T^*Q$ of $V(Q) \subset TQ$. For each $q \in Q$,

$$V_q(Q)^\circ := \{ \alpha_q \in T_q^*Q \mid \langle \alpha_q, \xi_Q(q) \rangle = 0 \} \subset T_q^*Q$$

Form the coadjoint bundle of \tilde{Q} , the **Sternberg space**

$$S := \tilde{Q} \times_G \mathfrak{g}^*.$$

The map $\varphi_{\mathcal{A}}: \tilde{Q} \times \mathfrak{g}^* \to T^*Q$ given by

$$\varphi_{\mathcal{A}}\left(\left(\alpha_{[q]},q\right),\mu\right) := T_q^*\pi(\alpha_{[q]}) + \mathcal{A}(q)^*\mu$$

is a G-equivariant vector bundle isomorphism over Q. It descends to a vector bundle isomorphism over Q/G

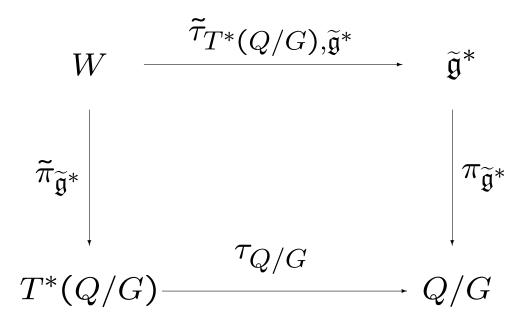
$$\Phi_{\mathcal{A}}: S \to (T^*Q)/G.$$

The Sternberg space Poisson bracket $\{\cdot, \cdot\}_S$ is defined as the pull back by Φ_A of the Poisson bracket of $(T^*Q)/G$.

WEINSTEIN SPACE

Form the coadjoint bundle $\tilde{\mathfrak{g}}^* := Q \times_G \mathfrak{g}^*$. Then pull it back by the cotangent bundle projection $\tau_{Q/G} : T^*(Q/G) \to Q/G$ and get

$$W := \{ (\alpha_{[q]}, [q, \mu]) \in T^*(Q/G) \times \tilde{\mathfrak{g}}^* \mid$$
$$\tau_{Q/G}(\alpha_{[q]}) = \pi_{\tilde{\mathfrak{g}}^*}([q, \mu]) := [q] \}$$



 $\tilde{\pi}_{\tilde{\mathfrak{g}}^*}$, $\tilde{\tau}_{T^*(Q/G),\tilde{\mathfrak{g}}^*}$ first and second projections.

W is a vector bundle over $T^*(Q/G)$ with fiber $\tilde{\pi}_{\tilde{\mathfrak{g}}^*}^{-1}(\alpha_{[q]}) = \pi_{\tilde{\mathfrak{g}}^*}^{-1}([q]) = \{[q,\mu] \mid \mu \in \mathfrak{g}^*\}$ over $\alpha_{[q]}$.

W is also a vector bundle over Q/G relative to the projection $(\alpha_{[q]}, [q, \mu]) \in W \mapsto [q] \in Q/G$; the fiber over [q] equals $W_{[q]} = T^*_{[q]}(Q/G) \oplus \tilde{\mathfrak{g}}^*_{[q]}$. That is, we have the immediate identification

$$W = T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$$

as vector bundles of Q/G.

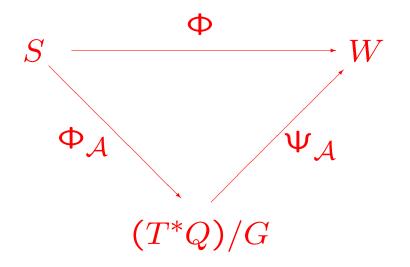
There exists a vector bundle isomorphism over Q/G

 $\Psi_{\mathcal{A}} : [\alpha_q] \in (T^*Q)/G \longmapsto (\operatorname{hor}_q^*(\alpha_q), [q, \mathbf{J}(\alpha_q)]) \in W,$

where $\operatorname{hor}_q := (T_q \pi|_{H(Q)_q})^{-1} : T_{[q]}(Q/G) \to H_q(Q) \subset T_q Q$ is the horizontal lift operator. Thus $\operatorname{hor}_q^* : T_q^*Q \to T_{[q]}^*(Q/G)$ is a linear surjective map whose kernel is the annihilator $H(Q)_q^\circ$ of the horizontal space. The Weinstein space Poisson bracket $\{\cdot, \cdot\}_W$ is the push forward by Ψ_A of the Poisson bracket of $(T^*Q)/G$.

Recall that pull back and association commute.

The following diagram of vector bundle isomorphisms over Q/G is commutative



 $\Phi : (S, \{\cdot, \cdot\}_S) \to (W, \{\cdot, \cdot\}_W)$ is an isomorphism of Poisson manifolds. Also, $\Phi^* : W^*_{\alpha_{[q]}} \to S^*_{\alpha_{[q]}}$ restricted to each fiber (which is isomorphic to \mathfrak{g}) is an isomorphism of Lie algebras for every $\alpha_{[q]} \in T^*(Q/G)$, that is, $\Phi^* : W^* \to S^*$ is an isomorphism of Lie algebra bundles.

COVARIANT EXTERIOR DERIVATIVES ON ASSOCIATED BUNDLES

 $\pi: P \to M$ left principal *G*-bundle, *V* a left representation space of *G*, hor_{*p*}: $T_{\pi(p)}M \to T_pP$ the horizontal lift operator at $p \in P$ of the given connection $\mathcal{A} \in \Omega^1(P; \mathfrak{g})$. Then the horizontal lift operator of the induced affine connection on the associated vector bundle π_E : $E = P \times_G V \to M$ induced by \mathcal{A} is given by

$$hor_{[p,v]}(u_m) := T_{(p,v)} \pi_{P \times V} (hor_p(u_m), 0),$$

where $p \in P$, $v \in V$, $m = \pi(p) = [p]$, $u_m \in T_m M$, $\pi_{P \times V}$: $P \times V \to E$ is the orbit map, and $[p, v] := \pi_{P \times V}(p, v) \in E$.

The covariant derivative $d_{\mathcal{A}}f$ of $f \in C^{\infty}(P \times_{G} V)$ relative to the affine connection given by this horizontal lift operator is

$$\mathbf{d}_{\mathcal{A}}f([p,v])(u_m) := \mathbf{d}f([p,v]) \left(\mathsf{hor}_{[p,v]}(u_m) \right) \in T_m^* M.$$

COVARIANT EXTERIOR DERIVATIVES ON PULL BACK VECTOR BUNDLES

 $\pi: E \to M$ vector bundle with an affine connection ∇ , N another manifold, $\tau: N \to M$ a surjective submersion. Denote by $\tilde{E} := \{(n,\epsilon) \mid \tau(n) = \pi(\epsilon)\}$ the pull back bundle over N, which is a vector bundle $\tilde{\pi}$: $\tilde{E} \to N$, where $\tilde{\pi}$ is the projection on the first factor N. Denote by $\tilde{\tau}_{N,E}: \tilde{E} \to E$ the projection on the second factor Eand recall that $\pi \circ \tilde{\tau}_{N,E} = \tau \circ \tilde{\pi}$. Denote for any $\epsilon \in E$ by hor_{ϵ}: $T_{\pi(\epsilon)}M \to T_{\epsilon}E$ the horizontal lift operator of the connection ∇ .

Define the horizontal lift operator $\operatorname{hor}_{(n,\epsilon)} : T_n N \to T_{(n,\epsilon)} \tilde{E}$ $\operatorname{hor}_{(n,\epsilon)}(v_n) := (v_n, \operatorname{hor}_{\epsilon} T_n \tau(v_n))$

for $(n,\epsilon) \in \tilde{E}$, $v_n \in T_n N$.

If $f \in C^{\infty}(\tilde{E})$, its covariant exterior derivative $\widetilde{\nabla}f(n,\epsilon) \in T_n^*N$ is defined by

$$\widetilde{\nabla}f(n,\epsilon)(v_n) := \mathbf{d}f(n,\epsilon)\big(\operatorname{hor}_{(n,\epsilon)}(v_n)\big),$$

where $(n, \epsilon) \in \tilde{P}$ and $v_n \in T_n N$.

COVARIANT EXTERIOR DERIVATIVES ON S AND W

Recall that $\tilde{\pi} : \tilde{Q} \to T^*(Q/G)$ is a principal *G*-bundle, the pull back of $\pi : Q \to Q/G$ over the cotangent bundle projection $\tau_{Q/G} : T^*(Q/G) \to Q/G$. Recall that $\tilde{\tau}_{T^*(Q/G),Q} : \tilde{Q} \to Q$ is the projection on the second factor. So $\tilde{\mathcal{A}} := \tilde{\tau}^*_{T^*(Q/G),Q} \mathcal{A} \in \Omega^1(\tilde{Q}; \mathfrak{g})$ is a connection. Its horizontal lift is

$$\operatorname{hor}_{(\alpha_{[q]},q)}\left(v_{\alpha_{[q]}}\right) = \left(v_{\alpha_{[q]}}, \operatorname{hor}_{q}\left(T_{\alpha_{[q]}}\tau_{Q/G}(v_{\alpha_{[q]}})\right)\right).$$
$$H_{(\alpha_{[q]},q)}(\tilde{Q}) = T_{\alpha_{[q]}}(T^{*}(Q/G)) \times H_{q}(Q).$$

For the case of the associated bundle $\tilde{\pi}_{\tilde{Q}} : S \to T^*(Q/G)$, $S := \tilde{Q} \times_G \mathfrak{g}^*$, $\tilde{\pi}_{\tilde{Q}}([(\alpha_{[q]}, q), \mu]) = \alpha_{[q]}$, the formula for the associated horizontal lift at $s = [(\alpha_{[q]}, q), \mu] \in S$ becomes

$$\operatorname{hor}_{s}(v_{\alpha_{[q]}}) = T_{((\alpha_{[q]},q),\mu)} \pi_{\tilde{Q} \times \mathfrak{g}^{*}} \left(\operatorname{hor}_{(\alpha_{[q]},q)} v_{\alpha_{[q]}}, 0 \right)$$
$$= T_{((\alpha_{[q]},q),\mu)} \pi_{\tilde{Q} \times \mathfrak{g}^{*}} \left(\left(v_{\alpha_{[q]}}, \operatorname{hor}_{q}(T_{\alpha_{[q]}} \tau_{Q/G}(v_{\alpha_{[q]}})) \right), 0 \right),$$

 $\pi_{\tilde{Q}\times\mathfrak{g}^*}: \tilde{Q}\times\mathfrak{g}^*\to S=\tilde{Q}\times_G\mathfrak{g}^*$ is the orbit projection.

Let $f \in C^{\infty}(S)$, $s = [(\alpha_{[q]}, q), \mu] \in S$. The pull back connection one-form $\tilde{\mathcal{A}} \in \Omega^1(\tilde{Q}; \mathfrak{g})$ defines hence a covector

$$\begin{split} \mathbf{d}_{\tilde{\mathcal{A}}}^{S}f(s) &\in T^{*}_{\tilde{\pi}_{\tilde{Q}}(s)}T^{*}(Q/G) \text{ by} \\ \mathbf{d}_{\tilde{\mathcal{A}}}^{S}f(s)\left(v_{\alpha_{[q]}}\right) &:= \mathbf{d}f(s)\left(\operatorname{hor}_{s}\left(v_{\alpha_{[q]}}\right)\right) = \\ \mathbf{d}f(s)\left(T_{((\alpha_{[q]},q),\mu)}\pi_{\tilde{Q}\times\mathfrak{g}^{*}}\left(\left(v_{\alpha_{[q]}},\operatorname{hor}_{q}(T_{\alpha_{[q]}}\tau_{Q/G}(v_{\alpha_{[q]}}))\right),0\right)\right), \\ \text{where } \tilde{\pi}_{\tilde{Q}}(s) &= \alpha_{[q]}, \text{ and and } v_{\alpha_{[q]}} \in T_{\alpha_{[q]}}\left(T^{*}(Q/G)\right). \end{split}$$

W is the pull back of the vector bundle $\pi_{\tilde{\mathfrak{g}}^*}$: $\tilde{\mathfrak{g}}^*Q/G$, which has an affine connection as an associated bundle, by $\tau_{Q/G}$: $T^*(Q/G) \to Q/G$. So there is an induced $\widetilde{\nabla}^W$ covariant derivative on W. If $f \in C^{\infty}(W)$ then

$$\widetilde{\nabla}^{W} f(\alpha_{[q]}, [q, \mu]) = \mathbf{d} f(\alpha_{[q]}, [q, \mu]) \circ \operatorname{hor}_{(\alpha_{[q]}, [q, \mu])}$$
$$\in T^*_{\alpha_{[q]}}(T^*(Q/G)).$$

POISSON BRACKETS ON S **AND** W

Let $s = [(\alpha_{[q]}, q), \mu] \in S$ and $v = [q, \mu] \in \tilde{\mathfrak{g}}^*$. The Poisson bracket of $f, g \in C^{\infty}(S)$ is given by

$$\begin{split} \{f,g\}_{S}(s) &= \Omega_{Q/G}(\alpha_{[q]}) \left(\mathbf{d}_{\tilde{\mathcal{A}}}^{S} f(s)^{\sharp}, \mathbf{d}_{\tilde{\mathcal{A}}}^{S} g(s)^{\sharp} \right) \\ &+ \left\langle v, \tilde{\mathcal{B}}(\alpha_{[q]}) \left(\mathbf{d}_{\tilde{\mathcal{A}}}^{S} f(s)^{\sharp}, \mathbf{d}_{\tilde{\mathcal{A}}}^{S} g(s)^{\sharp} \right) \right\rangle - \left\langle s, \left[\frac{\delta f}{\delta s}, \frac{\delta g}{\delta s} \right] \right\rangle, \end{split}$$

where $\Omega_{Q/G}$ is the canonical symplectic form on $T^*(Q/G)$, $\tilde{\mathcal{B}} \in \Omega^2(T^*(Q/G); \tilde{\mathfrak{g}})$ is thus the $\tilde{\mathfrak{g}}$ -valued two-form on $T^*(Q/G)$ given by $\tilde{\mathcal{B}} = \tau^*_{Q/G} \bar{\mathcal{B}}$, with $\bar{\mathcal{B}} \in \Omega^2(Q/G, \tilde{\mathfrak{g}})$, $\sharp : T^*(T^*(Q/G)) \to T(T^*(Q/G))$ is the vector bundle isomorphism induced by $\Omega_{Q/G}$, and $\delta f/\delta s \in S^* = \tilde{Q} \times_G \mathfrak{g}$ is the usual fiber derivative of f at the point $s \in S$, that is,

$$\left\langle s', \frac{\delta f}{\delta s} \right\rangle := \frac{d}{dt} \Big|_{t=0} f\left(\left[(\alpha_{[q]}, q), \mu + t\nu \right] \right)$$

for any $s' := \left[(\alpha_{[q]}, q), \nu \right] \in S.$

The third term has a more convenient expression. Denote by $\delta f/\delta v \in \tilde{\mathfrak{g}}$ the unique element in the fiber at [q] of the adjoint bundle $\tilde{\mathfrak{g}}$ defined by the equality

$$\left\langle [q,\nu], \frac{\delta f}{\delta v} \right\rangle = \frac{d}{dt} \Big|_{t=0} f\left([(\alpha_{[q]},q),\mu+t\nu] \right)$$
$$= \left\langle [(\alpha_{[q]},q),\nu)], \frac{\delta f}{\delta s} \right\rangle$$

for any $\nu \in \mathfrak{g}^*$, where $s = [(\alpha_{[q]}, q), \mu] \in S = \tilde{Q} \times_G \mathfrak{g}^*$ and $v = [q, \mu] \in \tilde{\mathfrak{g}}^*$.

Thus $\delta f/\delta v$ is an element in $\tilde{\mathfrak{g}}$ over the point $[q] \in Q/G$ and can therefore be paired with $[q,\nu] \in \tilde{\mathfrak{g}}^*$. Note that we abuse here the symbol $\delta f/\delta v$ which should denote the usual fiber derivative of a function on the vector bundle $\tilde{\mathfrak{g}}^*$; however, this makes no a priori sense in this case, since $f \in C^{\infty}(S)$ is not a function on $\tilde{\mathfrak{g}}^*$. Nevertheless we retain this notation for it is suggestive of the result. With this definition, for $s = [(\alpha_{[q]}, q), \mu] \in S$ and v = $[q,\mu] \in \tilde{\mathfrak{g}}^*$, we have

$$\left\langle s, \left[\frac{\delta f}{\delta s}, \frac{\delta g}{\delta s}\right] \right\rangle = \left\langle v, \left[\frac{\delta f}{\delta v}, \frac{\delta g}{\delta v}\right] \right\rangle.$$

 $w = (\alpha_{[q]}, [q, \mu]), v = [q, \mu], \tilde{\mathcal{B}} = \tau_{Q/G}^* \bar{\mathcal{B}} \in \Omega^2 (T^*(Q/G); \tilde{\mathfrak{g}}).$ The Poisson bracket of $f, g \in C^{\infty}(W)$ is given by

$$\begin{split} \{f,g\}_W(w) &= \Omega_{Q/G}(\alpha_{[q]}) \left(\widetilde{\nabla}^W_{\mathcal{A}} f(w)^{\sharp}, \widetilde{\nabla}^W_{\mathcal{A}} g(w)^{\sharp} \right) \\ &+ \left\langle v, \widetilde{\mathcal{B}}(\alpha_{[q]}) \left(\widetilde{\nabla}^W_{\mathcal{A}} f(w)^{\sharp}, \widetilde{\nabla}^W_{\mathcal{A}} g(w)^{\sharp} \right) \right\rangle \\ &- \left\langle w, \left[\frac{\delta f}{\delta w}, \frac{\delta g}{\delta w} \right] \right\rangle. \end{split}$$

 $\delta f/\delta w \in W^*$ is the fiber derivative of f in W.

What are the symplectic leaves?

MINIMAL COUPLING CONSTRUCTION

Construction of presymplectic forms on associated bundles.

 $\sigma: P \to B$ a left principal *G*-bundle, $\mathcal{A} \in \Omega^1(P; \mathfrak{g})$ a connection one-form on *P*, (M, ω) a Hamiltonian *G*-space with equivariant momentum map $\mathbf{J}: M \to \mathfrak{g}^*$, and denote by $\Pi_P: P \times M \to P$ and $\Pi_M: P \times M \to M$ the two projections. Then $\langle \Pi_M^* \mathbf{J}, \Pi_P^* \mathcal{A} \rangle \in \Omega^1(P \times M)$ defined by

 $\langle \Pi_M^* \mathbf{J}, \Pi_P^* \mathcal{A} \rangle (p, m)(u_p, v_m) := \langle \mathbf{J}(m), \mathcal{A}(p)(v_p) \rangle$

for all $p \in P, m \in M, u_p \in T_pP$, and $v_m \in T_mM$, is a *G*-invariant one-form.

Thus, if $\xi_{P \times M} = (\xi_P, \xi_M)$ is the infinitesimal generator of the diagonal *G*-action on $P \times M$ defined by $\xi \in \mathfrak{g}$, we have $\pounds_{\xi_{P \times M}} \langle \Pi_M^* \mathbf{J}, \Pi_P^* \mathcal{A} \rangle = 0$. A computation shows

$$\mathbf{i}_{\xi_{P\times M}}\left(\mathbf{d}\left\langle \mathsf{\Pi}_{M}^{*}\mathbf{J},\mathsf{\Pi}_{P}^{*}\mathcal{A}\right\rangle +\mathsf{\Pi}_{M}^{*}\omega\right)=\mathbf{0}.$$

Since $d \langle \Pi_M^* \mathbf{J}, \Pi_P^* \mathcal{A} \rangle + \Pi_M^* \omega$ is also *G*-invariant, it follows that the closed two-form $d \langle \Pi_M^* \mathbf{J}, \Pi_P^* \mathcal{A} \rangle + \Pi_M^* \omega$ descends to a closed two form $\omega^{\mathcal{A}} \in \Omega^2(P \times_G M)$, that is, $\omega^{\mathcal{A}}$ is characterized by the relation

$$\rho^* \omega^{\mathcal{A}} = \mathbf{d} \left\langle \mathsf{\Pi}_M^* \mathbf{J}, \mathsf{\Pi}_P^* \mathcal{A} \right\rangle + \mathsf{\Pi}_M^* \omega,$$

where $\rho: P \times M \to P \times_G M$ is the projection to the orbit space.

Now assume, in addition, that the base (B, Ω) is a symplectic manifold and denote by $\sigma_M : P \times_G M \to B$ the associated fiber bundle projection given by $\sigma_M([p,m]) := \sigma(p)$. Then $\sigma_M^*\Omega$ is also a closed two-form on $P \times_G M$ and one gets the **minimal coupling** presymplectic form $\omega^A + \sigma_M^*\Omega$. In general, this presymplectic form is degenerate.

SYMPLECTIC FORM ON $\tilde{Q} \times_G \mathcal{O}$

Apply the minimal coupling construction: $P = \tilde{Q}$, B = $T^*(Q/G)$, $\Omega = \Omega_{Q/G} = -d\Theta_{Q/G}$, $\sigma = \tilde{\pi} : (\alpha_{[a]}, q) \in$ $\tilde{Q} \mapsto \alpha_{[q]} \in T^*(Q/G)$, the connection on this principal Gbundle is $\tilde{\mathcal{A}} = \tilde{\tau}^*_{T^*(Q/G),Q} \mathcal{A} \in \Omega^1(\tilde{Q};\mathfrak{g})$, where $\tilde{\tau}_{T^*(Q/G),Q}$: $\tilde{Q} \to Q$ is the projection on the second factor, $(M, \omega) =$ $(\mathcal{O}, \omega_{\mathcal{O}}^{-}), \mathbf{J} = \mathbf{J}_{\mathcal{O}} : \mathcal{O} \to \mathfrak{g}^{*}$ is given by $\mathbf{J}_{\mathcal{O}}(\mu) = -\mu$ for any $\mu \in \mathfrak{g}^*$, and $\rho : \tilde{Q} \times \mathcal{O} \to \tilde{Q} \times_G \mathcal{O}$ is the quotient map for the diagonal G-action. Note that $\rho = \pi_{\tilde{Q} \times \mathfrak{a}^*}|_{\tilde{Q} \times \mathcal{O}}$ where $\pi_{\tilde{Q}\times\mathfrak{q}^*}$: $\tilde{Q}\times\mathfrak{g}^*\to S$ is the projection onto the G-orbit space. Then $\sigma_M = \tilde{\pi}_{\tilde{Q}} : \tilde{Q} \times_G \mathcal{O} \to T^*(Q/G)$ is given by $\tilde{\pi}_{\tilde{O}}([(\alpha_{[q]}, q), \mu]) = \alpha_{[q]}.$

Denote the two form $\omega^{\mathcal{A}}$ in this situation by $\tilde{\omega}_{\mathcal{O}}^{-}$ and hence it is uniquely characterized by the relation

$$\rho^* \tilde{\omega}_{\mathcal{O}}^- = \mathbf{d} \left\langle \mathsf{\Pi}_{\mathcal{O}}^* \mathbf{J}_{\mathcal{O}}, \mathsf{\Pi}_{\tilde{Q}}^* \tilde{\mathcal{A}} \right\rangle + \mathsf{\Pi}_{\mathcal{O}}^* \omega_{\mathcal{O}}^-,$$

where $\Pi_{\tilde{Q}} : \tilde{Q} \times \mathcal{O} \to \tilde{Q}$ and $\Pi_{\mathcal{O}} : \tilde{Q} \times \mathcal{O} \to \mathcal{O}$ are the projections on the two factors.

The two-form $\tilde{\omega}_{\mathcal{O}}^- + \tilde{\pi}_{\tilde{Q}}^* \Omega_{Q/G}$ on $\tilde{Q} \times_G \mathcal{O}$ is obtained by reduction.

• Recall: The *G*-equivariant vector bundle isomorphism $\varphi_{\mathcal{A}} : \tilde{Q} \times \mathfrak{g}^* \to T^*Q$ is defined by $\varphi_{\mathcal{A}}\left(\left(\alpha_{[q]},q\right),\mu\right) := T_q^*\pi(\alpha_{[q]}) + \mathcal{A}(q)^*\mu$ for any $\left(\left(\alpha_{[q]},q\right),\mu\right) \in \tilde{Q} \times \mathfrak{g}^*$. • Let $\mathbf{J}_{T^*Q}: T^*Q \to \mathfrak{g}^*$ be the momentum map of the lifted *G*-action. Define $\mathbf{J}_{\mathcal{A}} := \mathbf{J}_{T^*Q} \circ \varphi_{\mathcal{A}}: \tilde{Q} \times \mathfrak{g}^* \to \mathfrak{g}^*$. Then $\mathbf{J}_{\mathcal{A}} = \Pi_{\mathfrak{g}^*}$, the projection on the second factor. Hence $\mathbf{J}_{\mathcal{A}}^{-1}(\mathcal{O}) = \tilde{Q} \times \mathcal{O}$.

• $\Omega_{\mathcal{A}} = -\mathbf{d}\Theta_{\mathcal{A}}$ is a symplectic form on $\tilde{Q} \times \mathfrak{g}^*$, where

$$\Theta_{\mathcal{A}}\left(\left(\alpha_{[q]},q\right),\mu\right)\left(\left(u_{\alpha_{[q]}},v_{q}\right),\nu\right) \\ = \left\langle\alpha_{[q]},T_{q}\pi(v_{q})\right\rangle + \left\langle\mu,\mathcal{A}(q)(v_{q})\right\rangle \\ \left(\alpha_{[q]},q\right),\mu\right) \in \tilde{Q} \times \mathfrak{g}^{*}, \ \left(u_{\alpha_{[q]}},v_{q}\right) \in T_{\left(\alpha_{[q]},q\right)}\tilde{Q}, \ \nu \in \mathfrak{g}^{*}.$$

• So $J_{\mathcal{A}} : \tilde{Q} \times \mathfrak{g}^* \to \mathfrak{g}^*$ is the equivariant momentum map of the canonical *G*-action on the symplectic manifold $(\tilde{Q} \times \mathfrak{g}^*, \Omega_{\mathcal{A}}).$ • Therefore, $\tilde{Q} \times_G \mathcal{O} = \mathbf{J}_{\mathcal{A}}^{-1}(\mathcal{O})/G$ has the reduced symplectic form $\tilde{\omega}_{\mathcal{O}}^- + \tilde{\pi}_{\tilde{Q}}^* \Omega_{Q/G}$.

The symplectic leaves of S are the connected components of the symplectic manifolds $\left(\tilde{Q} \times_G \mathcal{O}, \tilde{\omega}_{\mathcal{O}}^- + \tilde{\pi}_{\tilde{Q}}^* \Omega_{Q/G}\right)$, where \mathcal{O} is a coadjoint orbit in \mathfrak{g}^* .

Symplectic leaves of W

Recall that $\Phi: S \to W$ given by

$$\Phi\left(\left[(\alpha_{[q]},q),\mu\right]\right) = \left(\alpha_{[q]},[q,\mu]\right)$$

is a Poisson diffeomorphism. Therefore, the symplectic leaves of the Poisson manifold $(W, \{,\}_W)$ are the connected components of the symplectic manifolds

$$\left(\Phi\left(\tilde{Q}\times_{G}\mathcal{O}\right),\Phi_{*}\left(\tilde{\omega}_{\mathcal{O}}^{-}+\tilde{\pi}_{\tilde{Q}}^{*}\Omega_{Q/G}\right)\right).$$

Who are they?

$\Phi\left(\tilde{Q}\times_{G}\mathcal{O}\right)$ $=\left\{\left(\alpha_{[q]},[q,\mu]\right)\mid q\in Q,\alpha_{[q]}\in T_{[q]}(Q/G),\mu\in\mathcal{O}\subset\mathfrak{g}^{*}\right\}$ $=T^{*}(Q/G)\oplus(Q\times_{G}\mathcal{O})$ $\subset W=T^{*}(Q/G)\oplus\tilde{\mathfrak{g}}^{*}=T^{*}(Q/G)\oplus(Q\times_{G}\mathfrak{g}^{*}).$

Here, $T^*(Q/G) \oplus (Q \times_G \mathcal{O})$ is a fiber subbundle, not a vector subbundle, of $T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$; we still use the Whitney sum symbol, even though it is a fibered product of fiber bundles, to recall the fact that it is a subbundle of the Whitney sum bundle $W = T^*(Q/G) \oplus \tilde{\mathfrak{g}}^*$.

The closed *G*-invariant two-form $\omega_{Q \times \mathcal{O}}^- \in \Omega^2(Q \times \mathcal{O})$ defined by

$$\begin{split} \omega_{Q\times\mathcal{O}}^{-}(q,\mu)\left((u_{q},-\operatorname{ad}_{\xi}^{*}\mu),(v_{q},-\operatorname{ad}_{\eta}^{*}\mu)\right)\\ &:=-\operatorname{d}(\mathcal{A}\times\operatorname{id}_{\mathcal{O}})(q,\mu)\left((u_{q},-\operatorname{ad}_{\xi}^{*}\mu),(v_{q},-\operatorname{ad}_{\eta}^{*}\mu)\right)\\ &+\omega_{\mathcal{O}}^{-}(\mu)\left(-\operatorname{ad}_{\xi}^{*}\mu,-\operatorname{ad}_{\eta}^{*}\mu\right), \end{split}$$

where $\mathcal{A} \times id_{\mathcal{O}} \in \Omega^1(Q \times \mathfrak{g}^*)$ is given by

$$(\mathcal{A} \times \mathrm{id}_{\mathcal{O}})(q,\mu)(u_q,-\mathrm{ad}_{\xi}^*\mu) = \langle \mu,\mathcal{A}(q)(u_q) \rangle,$$

drops to a closed two-form $\omega_{Q\times_G \mathcal{O}}^- \in \Omega^2(Q\times_G \mathcal{O})$, that is, $\omega_{Q\times_G \mathcal{O}}^-$ is uniquely determined by the identity

$$\pi_{Q\times\mathcal{O}}^*\omega_{Q\times_G\mathcal{O}}^- = \omega_{Q\times\mathcal{O}}^-,$$

where $\pi_{Q \times \mathcal{O}} : Q \times \mathcal{O} \to Q \times_G \mathcal{O}$ the orbit space projection.

The symplectic leaves of W are the connected components of the symplectic manifolds

 $(T^*(Q/G) \oplus (Q \times_G \mathcal{O}), \Pi^*_{T^*(Q/G)}\Omega_{Q/G} + \Pi^*_{Q \times_G \mathcal{O}}\omega^-_{Q \times_G \mathcal{O}}),$ where \mathcal{O} is a coadjoint orbit in \mathfrak{g}^* , $\Omega_{Q/G}$ is the canonical symplectic form on $T^*(Q/G), \omega^-_{Q \times_G \mathcal{O}}$ is the closed twoform on $Q \times_G \mathcal{O}$ given above, and $\Pi_{T^*(Q/G)} : T^*(Q/G) \oplus$ $(Q \times_G \mathcal{O}) \to T^*(Q/G), \Pi_{Q \times_G \mathcal{O}} : T^*(Q/G) \oplus (Q \times_G \mathcal{O}) \to$ $Q \times_G \mathcal{O}$ are the projections on the two factors.

Bibliography

Geometric mechanics books

• R. Abraham and J.E. Marsden, *Foundations of Mechanics*, second edition, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Available in AMS Chelsea.

• V.I. Arnold, *Mathematical Methods of Classical Mechanics*, Graduate Texts in Mathematics **60**, second edition, Springer-Verlag 1989.

• A.M. Bloch, *Nonholonomic Mechanics and Control*, second edition, Springer-Verlag, 2015.

• R.H. Cushman and L.M. Bates, *Global Aspects of Classical Integrable Systems*, Birhäuser, Basel, 1997.

• R.H. Cushman, J.J. Duistermaat, J. Śniatycki, *Geometry of Nonholonomically Constrained Systems*, Advanced Series in Nonlinear Dynamics, **26**, World Scientific, Singapore 2010.

• D.D. Holm, *Geometric Mechanics*, two volumes, second edition, Imperial College Press, 2011.

• J.E. Marsden, *Lectures on Mechanics*, second edition, London Mathematical Society Lecture Note Series , Cambridge University Press,

• J.E. Marsden, T.S. Ratiu, *Introduction to Mechanics and Symmetry*, second edition, Texts in Applied Mathematics, **17**, Springer-Verlag, 1999

• J. Montaldi, T.S. Ratiu, *Geometric Mechanics and Symmetry, The Peyresq Lectures*, London Mathematical Society Lecture Note Series **306**, Cambridge University Press, 2005.

Symplectic geometry books

• L. Hörmander, *The Analysis of Linear Differential Operators III*, Grundlehren der mathematischen Wissenschaften **274**, corrected second printing, 1994, Chapter 21.

• J.E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T.S. Ratiu, *Hamil-tonian Reduction by Stages*, Lecture Notes in Mathematics, **1913**, Springer-Verlag, Berlin Heidelberg, 2007.

• P.W. Michor, *Topics in Differential Geometry*, Graduate Studies in Mathematics, **93**, American Mathematical Society, Providence, RI, 2008. Chapter 7.

• J.-P. Ortega and T.S. Ratiu, *Momentum Maps and Hamiltonian Reduction*, Progress in Mathematics **222**, Birkhäuser, Boston, 2004

• A. Weinstein, *Lectures on Symplectic Manifolds*, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976. Regional Conference Series in Mathematics, **29**. American Mathematical Society, Providence, R.I., 1977.

There are many papers on applications: stability with energy-Casimir and energymomentum method, fluid mechanics, complex fluids, control and mechanics.