Application Moment et Réduction en Mécanique

Tudor S. Ratiu

School of Mathematics
Shanghai Jiao Tong University

OVERVIEW OF THE COURSE

- Symplectic manifolds
- Poisson manifolds
- Lie group actions
- Abstract symmetry reduction
- Cotangent bundle reduction
- Lagrangian approach to reduction
- Conservation laws via generalized distributions
- The optimal momentum map and groupoids
- Optimal reduction
- Singular point reduction
- Singular orbit reduction
- Poisson reduction
- Coisotropic reduction
- Cosymplectic reduction

SYMPLECTIC MANIFOLDS

A symplectic manifold is a pair (M, ω), where M is a manifold and $\omega \in \Omega^{2}(M)$ is a closed non-degenerate two-form on M, that is,

- $\mathrm{d} \omega=0$
- for every $m \in M$, the map

$$
v \in T_{m} M \mapsto \omega(m)(v, \cdot) \in T_{m}^{*} M
$$

is a linear isomorphism.

If ω is allowed to be degenerate, (M, ω) is called a presymplectic manifold. A Hamiltonian dynamical system is a triple (M, ω, h), where (M, ω) is a symplectic manifold and $h \in C^{\infty}(M)$ is the Hamiltonian function of the system. By non-degeneracy of the symplectic form ω, to each Hamiltonian system one can associate a Hamiltonian vector field $X_{h} \in \mathfrak{X}(M)$, defined by the equality

$$
\mathbf{i}_{X_{h}} \omega:=\omega\left(X_{h}, \cdot\right)=\mathrm{d} h
$$

Example V vector space, V^{*} its dual. Let $Z=V \times V^{*}$. The canonical symplectic form Ω on Z is defined by

$$
\begin{gathered}
\Omega\left(\left(v_{1}, \alpha_{1}\right),\left(v_{2}, \alpha_{2}\right)\right):=\left\langle\alpha_{2}, v_{1}\right\rangle-\left\langle\alpha_{1}, v_{2}\right\rangle \\
{[\Omega]=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
-1 & \mathbf{0}
\end{array}\right]=: \mathbb{J}}
\end{gathered}
$$

Example Q manifold, $T^{*} Q$ its cotangent bundle, π_{Q} : $T^{*} Q \rightarrow Q$ projection. The canonical one-form Θ on $T^{*} Q$ defined by

$$
\Theta(\beta) \cdot v_{\beta}:=\left\langle\beta, T_{\beta} \pi_{Q}\left(v_{\beta}\right)\right\rangle, \quad \beta \in T^{*} Q, \quad v_{\beta} \in T_{\beta}\left(T^{*} Q\right)
$$

In canonical coordinates $\Theta=p_{i} d q^{i}$

The canonical symplectic form Ω on the cotangent bundle $T^{*} Q$ is defined by $\Omega=-\mathbf{d} \Theta$.

Darboux theorem: Locally $\left.\omega\right|_{U}=\sum_{i=1}^{n} \mathbf{d} q^{i} \wedge \mathbf{d} p_{i}$.

In canonical coordinates, X_{h} is determined by the wellknown Hamilton equations,

$$
\frac{d q^{i}}{d t}=\frac{\partial h}{\partial p_{i}}, \quad \frac{d p_{i}}{d t}=-\frac{\partial h}{\partial q^{i}}
$$

The Poisson bracket of $f, g \in C^{\infty}(M)$ is the function $\{f, g\} \in C^{\infty}(M)$ defined by

$$
\{f, g\}(z)=\omega(z)\left(X_{f}(z), X_{g}(z)\right)
$$

In canonical coordinates, the Poisson bracket has the form

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial q^{i}} \frac{\partial f}{\partial p_{i}}\right)
$$

POISSON MANIFOLDS

- ($M,\{\cdot, \cdot\}$) Poisson manifold if $\left(C^{\infty}(M),\{\cdot, \cdot\}\right)$ Lie algebra such that

$$
\{f g, h\}=f\{g, h\}+g\{f, h\}
$$

- Casimir functions are the elements of the center of $\left(C^{\infty}(M),\{\cdot, \cdot\}\right)$.
- Hamiltonian vector field of $h \in C^{\infty}(M)$
$£_{X_{h}} f:=\left\langle\mathbf{d} f, X_{h}\right\rangle:=X_{h}[f]=\{f, h\}$, for all $f \in C^{\infty}(M)$.

Example: The Lie-Poisson bracket. The dual \mathfrak{g}^{*} of a Lie algebra \mathfrak{g} is a Poisson manifold with respect to the \pm-Lie-Poisson brackets $\{\cdot, \cdot\}_{ \pm}$defined by

$$
\{f, g\}_{ \pm}(\mu):= \pm\left\langle\mu,\left[\frac{\delta f}{\delta \mu}, \frac{\delta g}{\delta \mu}\right]\right\rangle
$$

where $\frac{\delta f}{\delta \mu} \in \mathfrak{g}$ is defined by

$$
\left\langle\nu, \frac{\delta f}{\delta \mu}\right\rangle:=D f(\mu) \cdot \nu
$$

for any $\nu \in \mathfrak{g}^{*}$. The Hamiltonian vector field of $h \in$ $C^{\infty}\left(\mathfrak{g}^{*}\right)\left(\dot{f}=\{f, h\} \Leftrightarrow X_{h}=\{\cdot, f\}\right)$ is given by

$$
X_{h}(\mu)=\mp \operatorname{ad}_{\delta h / \delta \mu}^{*} \mu, \quad \mu \in \mathfrak{g}^{*}
$$

Example: Frozen Lie-Poisson bracket. Same notations as before. Let $\nu \in \mathfrak{g}^{*}$ and define the frozen Lie-Poisson brackets $\{\cdot, \cdot\}_{ \pm}$defined by

$$
\{f, g\}_{ \pm}^{\nu}(\mu):= \pm\left\langle\nu,\left[\frac{\delta f}{\delta \mu}, \frac{\delta g}{\delta \mu}\right]\right\rangle .
$$

The Hamiltonian vector field of $h \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ is given by

$$
X_{h}(\mu)=\mp \operatorname{ad}_{\delta h / \delta \mu}^{*} \nu, \quad \mu \in \mathfrak{g}^{*} .
$$

The Lie-Poisson and frozen Lie-Poisson bracket are compatible, that is, $\{,\}_{ \pm}+s\{,\}_{ \pm}^{\nu}$ is also a Poisson bracket on \mathfrak{g}^{*} for any $\nu \in \mathfrak{g}^{*}$ and any $s \in \mathbb{R}$.

Example: Operator Algebra Brackets. \mathcal{H} be a complex Hilbert space.

- $\mathfrak{S}(\mathcal{H})$, trace class operators
- $\mathfrak{H} \mathfrak{S}(\mathcal{H})$, Hilbert-Schmidt operators
- $\mathfrak{K}(\mathcal{H})$, compact operators
- $\mathfrak{B}(\mathcal{H})$, bounded operators

They form involutive Banach algebras. $\mathfrak{S}(\mathcal{H}), \mathfrak{H} \mathfrak{S}(\mathcal{H})$, $\mathfrak{K}(\mathcal{H})$ are self adjoint ideals in $\mathfrak{B}(\mathcal{H})$.

$$
\begin{gathered}
\mathfrak{S}(\mathcal{H}) \subset \mathfrak{H} \mathfrak{S}(\mathcal{H}) \subset \mathfrak{K}(\mathcal{H}) \subset \mathfrak{B}(\mathcal{H}) \\
\mathfrak{K}(\mathcal{H})^{*} \cong \mathfrak{S}(\mathcal{H}), \quad \mathfrak{H} \mathfrak{S}(\mathcal{H})^{*} \cong \mathfrak{H} \mathfrak{S}(\mathcal{H}), \quad \mathfrak{S}(\mathcal{H})^{*} \cong \mathfrak{B}(\mathcal{H}) ;
\end{gathered}
$$

the right hand sides are all Banach Lie algebras. These dualities are implemented by the strongly nondegenerate pairing

$$
\langle x, \rho\rangle=\operatorname{trace}(x \rho)
$$

where $x \in \mathfrak{S}(\mathcal{H}), \rho \in \mathfrak{K}(\mathcal{H})$ for the first isomorphism, $\rho, x \in \mathfrak{H S}(\mathcal{H})$ for the second isomorphism, and $x \in \mathfrak{B}(\mathcal{H})$, $\rho \in \mathfrak{S}(\mathcal{H})$ for the third isomorphism.

The Banach spaces $\mathfrak{S}(\mathcal{H}), \mathfrak{H} \mathfrak{S}(\mathcal{H})$, and $\mathfrak{K}(\mathcal{H})$ are Banach Lie-Poisson spaces in a rigorous functional analytic sense. The Lie-Poisson bracket becomes in this case

$$
\{F, H\}(\rho)= \pm \operatorname{trace}([\mathbf{D} F(\rho), \mathbf{D} H(\rho)] \rho)
$$

where ρ is an element of $\mathfrak{S}(\mathcal{H}), \mathfrak{H} \mathfrak{S}(\mathcal{H})$, or $\mathfrak{K}(\mathcal{H})$, respectively. The bracket $[\mathbf{D} F(\rho), \mathbf{D} H(\rho)]$ denotes the commutator bracket of operators. The Hamiltonian vector field associated to H is given by

$$
X_{H}(\rho)= \pm[\mathbf{D} H(\rho), \rho] .
$$

The Poisson tensor. The derivation property of the Poisson bracket implies that for any two functions $f, g \in$ $C^{\infty}(M)$, the value of the bracket $\{f, g\}(z)$ on f only through $\mathbf{d} f(z)$ which allows us to define a contravariant antisymmetric two-tensor $B \in \Lambda^{2}(M)$ by

$$
B(z)\left(\alpha_{z}, \beta_{z}\right)=\{f, g\}(z)
$$

with $\mathbf{d} f(z)=\alpha_{z}$ and $\mathbf{d} g(z)=\beta_{z}$. This tensor is called the Poisson tensor of M. The vector bundle map B^{\sharp} :
$T^{*} M \rightarrow T M$ naturally associated to B is defined by

$$
B(z)\left(\alpha_{z}, \beta_{z}\right)=\left\langle\alpha_{z}, B^{\sharp}\left(\beta_{z}\right)\right\rangle .
$$

Its range $D:=B^{\sharp}\left(T^{*} M\right) \subset T M$ is called the characteristic distribution. For any point $m \in M$, the dimension of $D(m)$ as a vector subspace of $T_{m} M$ is called the rank of the Poisson manifold $(M,\{\cdot, \cdot\})$ at the point m.

The Weinstein coordinates of a Poisson manifold. Let $(M,\{\cdot, \cdot\})$ be a m-dimensional Poisson manifold and $z_{0} \in M$ a point where the rank of $(M,\{\cdot, \cdot\})$ equals $2 n$, $0 \leq 2 n \leq m$. There exists a chart (U, φ) of M whose domain contains the point z_{0} and such that the associated local coordinates, denoted by

$$
\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}, z^{1}, \ldots, z^{m-2 n}\right)
$$

satisfy

$$
\left\{q^{i}, q^{j}\right\}=\left\{p_{i}, p_{j}\right\}=\left\{q^{i}, z^{k}\right\}=\left\{p_{i}, z^{k}\right\}=0
$$

and $\left\{q^{i}, p_{j}\right\}=\delta_{j}^{i}$, for all $i, j, k, 1 \leq i, j \leq n, 1 \leq k \leq m-2 n$.

For all $k, l, 1 \leq k, l \leq m-2 n$, the Poisson bracket $\left\{z^{k}, z^{l}\right\}$ is a function of the local coordinates $z^{1}, \ldots, z^{m-2 n}$ exclusively, and vanishes at z_{0}. Hence, the restriction of the bracket $\{\cdot, \cdot\}$ to the coordinates $z^{1}, \ldots, z^{m-2 n}$ induces a Poisson structure that is usually referred to as the transverse Poisson structure of $(M,\{\cdot, \cdot\})$ at m.

If the rank is equal to $2 n$ in a neighborhood of z_{0}, then the transverse structure is zero.

A smooth mapping $\varphi:\left(M_{1},\{\cdot, \cdot\}_{1}\right) \rightarrow\left(M_{2},\{\cdot, \cdot\}_{2}\right)$ is canonical or Poisson if for all $g, h \in C^{\infty}\left(M_{2}\right)$ we have

$$
\varphi^{*}\{g, h\}_{2}=\left\{\varphi^{*} g, \varphi^{*} g\right\}_{1}
$$

In the symplectic category, $\varphi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ canonical or symplectic if

$$
\varphi^{*} \omega_{2}=\omega_{1}
$$

- Symplectic maps are immersions.
- A diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ between two symplectic manifolds $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$ is symplectic if and only if it is Poisson.
- If the symplectic map $\varphi: M_{1} \rightarrow M_{2}$ is not a diffeomorphism it may not be a Poisson map.
- A diffeomorphism $\varphi: T^{*} S \rightarrow T^{*} Q$ preserves the canonical one-forms Θ_{Q} on $T^{*} Q$ and Θ_{S} on $T^{*} S$ if and only if φ is the cotangent lift $T^{*} f$ of some diffeomorphism $f: Q \rightarrow S$.

Proof Suppose that $f: Q \rightarrow S$ is a diffeomorphism.
Then for $\beta \in T^{*} S$ and $v \in T_{\beta}\left(T^{*} S\right)$ we have

$$
\begin{aligned}
\left(\left(T^{*} f\right)^{*} \Theta_{Q}\right)(\beta) \cdot v & =\Theta_{Q}\left(T^{*} f(\beta)\right) \cdot T T^{*} f(v) \\
& =\left\langle T^{*} f(\beta),\left(T \pi_{Q} \circ T T^{*} f\right)(v)\right\rangle \\
& =\left\langle\beta, T\left(f \circ \pi_{Q} \circ T^{*} f\right)(v)\right\rangle \\
& =\left\langle\beta, T \pi_{S}(v)\right\rangle
\end{aligned}
$$

because $f \circ \pi_{Q} \circ T^{*} f=\pi_{S}$.

Idea for the converse. Assume that $\varphi^{*} \Theta_{Q}=\Theta_{S}$, i.e.,
$\left\langle\varphi(\beta), T\left(\pi_{Q} \circ \varphi\right)(v)\right\rangle=\left\langle\beta, T \pi_{S}(v)\right\rangle, \quad \forall \beta \in T^{*} S, v \in T_{\beta}\left(T^{*} S\right)$

Since φ is a diffeomorphism, the range of $T_{\beta}\left(\pi_{Q} \circ \varphi\right)$ is $T_{\pi_{Q}(\varphi(\beta))} Q$, so letting $\beta=0 \Rightarrow \varphi(0)=0$. Argue similarly for φ^{-1} and conclude that φ restricted to the zero section S of $T^{*} S$ is a diffeomorphism onto the zero section Q of $T^{*} Q$. Define $f:=\varphi^{-1} \mid Q$. Now one shows that φ is fiber preserving, i.e., $f \circ \pi_{Q}=\pi_{S} \circ \varphi^{-1}$. This is the main technical point. Then, using this, one shows that $\varphi=T^{*} f$.

Classical coordinate proof of the first part. Write

$$
\left(s^{1}, \ldots, s^{n}\right)=f\left(q^{1}, \ldots, q^{n}\right)
$$

Since $f: Q \rightarrow S$ is diffeomorphism, we can solve $q^{i}=$ $q^{i}\left(s^{1}, \ldots, s^{n}\right)$. Coordinates on $T^{*} Q$ are $\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$ and on $T^{*} S$ they are $\left(s^{1}, \ldots, s^{n}, r_{1}, \ldots, r_{n}\right)$. So, both q^{i} and p_{j} are functions of $\left(s^{1}, \ldots, s^{n}, r_{1}, \ldots, r_{n}\right)$. The map $T^{*} f$ is given by

$$
T^{*} f\left(s^{1}, \ldots, s^{n}, r_{1}, \ldots, r_{n}\right)=\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)
$$

But then, locally,

$$
\left(\Theta_{S}=\right) r_{i} d s^{i}=r_{i} \frac{\partial s^{i}}{\partial q^{k}} d q^{k}=p_{k} d q^{k}\left(=\left(T^{*} f\right)^{*} \Theta_{Q}\right)
$$

Let $\left(S,\{\cdot, \cdot\}^{S}\right)$ and $\left(M,\{\cdot, \cdot\}^{M}\right)$ be two Poisson manifolds such that $S \subset M$ and the inclusion $i_{S}: S \hookrightarrow M$ is an immersion. $\left(S,\{\cdot, \cdot\}^{S}\right)$ is a Poisson submanifold of $\left(M,\{\cdot, \cdot\}^{M}\right)$ if i_{S} is a canonical map.

An immersed submanifold Q of M is called a quasi Poisson submanifold of $\left(M,\{\cdot, \cdot\}^{M}\right)$ if for any $q \in Q$, any open neighborhood U of q in M, and any $f \in C_{M}^{\infty}(U)$ we have

$$
X_{f}\left(i_{Q}(q)\right) \in T_{q} i_{Q}\left(T_{q} Q\right)
$$

where $i_{Q}: Q \hookrightarrow M$ is the inclusion and X_{f} is the Hamiltonian vector field of f on U with respect to the restricted Poisson bracket $\{\cdot, \cdot\}_{U}^{M}$.

- On a quasi Poisson submanifold there is a unique Poisson structure that makes it into a Poisson submanifold.
- Any Poisson submanifold is quasi Poisson.

The converse is not true!

Counterexample. Let $\left(M=\mathbb{R}^{2}, B\right)$ where

$$
B(x, y)=\left(\begin{array}{cc}
0 & y \\
-y & 0
\end{array}\right)
$$

and $\left(Q=\mathbb{R}^{2}, \omega_{\text {can }}\right)$. The identity map id : $Q \rightarrow M$ is obviously not a Poisson diffeomorphism because one structure has leaves and the other is non-degenerate. But is is also clear that any Hamiltonian vector field relative to B is tangent to $Q=\mathbb{R}^{2}$ and hence (Q, ω_{can}) is a quasi-Poisson submanifold of (M, B).

Given two symplectic manifolds (M, ω) and $\left(S, \omega_{S}\right)$ such that $S \subset M$ and the inclusion $i: S \hookrightarrow M$ is an immersion, the manifold (S, ω_{S}) is a symplectic submanifold of (M, ω) when i is a symplectic map.

Symplectic submanifolds of a symplectic manifold (M, ω) are in general neither Poisson nor quasi Poisson manifolds of M.

The only quasi Poisson submanifolds of a symplectic manifold are its open sets which are, in fact, Poisson submanifolds.

Symplectic Foliation Theorem. Let ($M,\{\cdot, \cdot\}$) be a Poisson manifold and D the associated characteristic distribution. D is a smooth and integrable generalized distribution and its maximal integral leaves form a generalized foliation decomposing M into initial submanifolds \mathcal{L}, each of which is symplectic with the unique symplectic form that makes the inclusion $i: \mathcal{L} \hookrightarrow M$ into a Poisson map, that is, \mathcal{L} is a Poisson submanifold of ($M,\{\cdot, \cdot\}$).

Example: Let \mathfrak{g}^{*} with the Lie-Poisson structure. The symplectic leaves of the Poisson manifolds ($\mathfrak{g}^{*},\{\cdot, \cdot\}_{ \pm}$) coincide with the connected components of the orbits of the elements in \mathfrak{g}^{*} under the coadjoint action. In this situation, the symplectic form for the leaves is given by the Kostant-Kirillov-Souriau (KKS) or orbit symplectic form

$$
\omega_{\mathcal{O}}^{ \pm}(\nu)\left(-\operatorname{ad}_{\xi}^{*} \nu,-\operatorname{ad}_{\eta}^{*} \nu\right)= \pm\langle\nu,[\xi, \eta]\rangle
$$

- ($M,\{\cdot, \cdot\}$) Poisson manifold. G acts canonically on M when

$$
\Phi_{g}^{*}\{f, h\}=\left\{\Phi_{g}^{*} f, \Phi_{g}^{*} h\right\}
$$

for all $g \in G$.

- Easy Poisson reduction: ($M,\{\cdot, \cdot\}$) Poisson manifold, G Lie group acting canonically, freely, and properly on M. The orbit space M / G is a Poisson manifold with bracket

$$
\{f, g\}^{M / G}(\pi(m))=\{f \circ \pi, g \circ \pi\}(m)
$$

- Reduction of Hamiltonian dynamics: $h \in C^{\infty}(M)^{G}$ reduces to $\bar{h} \in C^{\infty}(M / G)$ given by $\bar{h} \circ \pi=h$ such that

$$
X_{\bar{h}} \circ \pi=T \pi \circ X_{h}
$$

- What about the symplectic leaves? This is where symplectic reduction comes in.
- Lie-Poisson reduction: Left quotient $\left(T^{*} G\right) / G \cong$ \mathfrak{g}_{-}^{*}. The map is: $\left[\alpha_{g}\right] \mapsto T_{e}^{*} R_{g}\left(\alpha_{g}\right)$. Direct proof. Discuss later. Notice that the quotient is for a left action and the map is given by right translation. Will be proved later.

LIE GROUP ACTIONS

M a manifold and G a Lie group. A left action of G on M is a smooth mapping $\Phi: G \times M \rightarrow M$ such that
(i) $\Phi(e, z)=z$, for all $z \in M$ and
(ii) $\Phi(g, \Phi(h, z))=\Phi(g h, z)$ for all $g, h \in G$ and $z \in M$.

We will often write

$$
g \cdot z:=\Phi(g, z):=\Phi_{g}(z):=\Phi^{z}(g)
$$

The triple (M, G, Φ) is called a G-space or a G-manifold.

Examples of group actions

- Translation and conjugation. The left (right) translation $L_{g}: G \rightarrow G,\left(R_{g}\right) h \mapsto g h$, induces a left (right) action of G on itself.
- The inner automorphism $\mathrm{AD}_{g}: G \rightarrow G$, given by $\mathrm{AD}_{g}:=R_{g^{-1}} \circ L_{g}$ defines a left action of G on itself called conjugation.
- Adjoint and coadjoint action. The differential at the identity of the conjugation mapping defines a linear left action of G on \mathfrak{g} called the adjoint representation of G on \mathfrak{g}

$$
\mathrm{Ad}_{g}:=T_{e} \mathrm{AD}_{g}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

If $\mathrm{Ad}_{g}^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is the dual of Ad_{g}, then the map

$$
\begin{aligned}
\Phi: G \times \mathfrak{g}^{*} & \longrightarrow \\
(g, \nu) & \longmapsto \mathrm{Ad}_{g^{-1}}^{\mathfrak{g}^{*}}
\end{aligned}
$$

defines also a linear left action of G on \mathfrak{g}^{*} called the coadjoint representation of G on \mathfrak{g}^{*}.

- Group representation. If the manifold M is a vector space V and G acts linearly on V, that is, $\Phi_{g} \in \mathrm{GL}(V)$ for all $g \in G$, where $G L(V)$ denotes the group of all linear automorphisms of V, then the action is said to be a representation of G on V. For example, the adjoint and coadjoint actions of G defined above are representations.
- Tangent lift of a group action. Φ induces a natural action on the tangent bundle $T M$ of M by

$$
g \cdot v_{m}:=T_{m} \Phi_{g}\left(v_{m}\right), \quad g \in G, \quad v_{m} \in T_{m} M
$$

- Cotangent lift of a group action. Let $\Phi: G \times M \rightarrow$ M be a smooth Lie group action on the manifold M. The map Φ induces a natural action on the cotangent bundle $T^{*} M$ of M by

$$
g \cdot \alpha_{m}:=T_{g \cdot m}^{*} \Phi_{g^{-1}}\left(\alpha_{m}\right)
$$

where $g \in G$ and $\alpha_{m} \in T_{m}^{*} M$.

The infinitesimal generator $\xi_{M} \in \mathfrak{X}(M)$ associated to $\xi \in \mathfrak{g}$ is the vector field on M defined by

$$
\xi_{M}(m):=\left.\frac{d}{d t}\right|_{t=0} \Phi_{\exp t \xi}(m)=T_{e} \Phi^{m} \cdot \xi
$$

The infinitesimal generators are complete vector fields. The flow of ξ_{M} equals $(t, m) \mapsto \exp t \xi \cdot m$. Moreover, the $\operatorname{map} \xi \in \mathfrak{g} \mapsto \xi_{M} \in \mathfrak{X}(M)$ is a Lie algebra antihomomorphism, that is,
(i) $(a \xi+b \eta)_{M}=a \xi_{M}+b \eta_{M}$,
(ii) $[\xi, \eta]_{M}=-\left[\xi_{M}, \eta_{M}\right]$.

If the action is on the right, then $\xi \in \mathfrak{g} \mapsto \xi_{M} \in \mathfrak{X}(M)$ is a Lie algebra homomorphism.

Let \mathfrak{g} be a Lie algebra and M a smooth manifold. A (left) right Lie algebra action of \mathfrak{g} on M is a Lie algebra (anti)homomorphism $\xi \in \mathfrak{g} \longmapsto \xi_{M} \in \mathfrak{X}(M)$ such that the mapping $(m, \xi) \in M \times \mathfrak{g} \longmapsto \xi_{M}(m) \in T M$ is smooth.

Given a Lie group action, we will refer to the Lie algebra action induced by its infinitesimal generators as the associated Lie algebra action.

Stabilizers and orbits. The isotropy subgroup or stabilizer of an element m in the manifold M acted upon by the Lie group G is the closed (hence Lie) subgroup

$$
G_{m}:=\left\{g \in G \mid \Phi_{g}(m)=m\right\} \subset G
$$

whose Lie algebra \mathfrak{g}_{m} equals

$$
\mathfrak{g}_{m}=\left\{\xi \in \mathfrak{g} \mid \xi_{M}(m)=0\right\}
$$

The orbit \mathcal{O}_{m} of the element $m \in M$ under the group action Φ is the set

$$
\mathcal{O}_{m} \equiv G \cdot m:=\left\{\Phi_{g}(m) \mid g \in G\right\}
$$

The isotropy subgroups of the elements in a group orbit are related by the expression

$$
G_{g \cdot m}=g G_{m} g^{-1} \text { for all } g \in G
$$

The notion of orbit allows the introduction of an equivalence relation in the manifold M, namely, two elements $x, y \in M$ are equivalent if and only if they are in the same G-orbit, that is, if there exists an element $g \in G$ such that $\Phi_{g}(x)=y$. The space of classes with respect to this equivalence relation is usually referred to as the space of orbits and, depending on the context, it is denoted by the symbol M / G.

- Transitive action: only one orbit, that is, $\mathcal{O}_{m}=M$
- Free action: $G_{m}=\{e\}$ for all $m \in M$
- Proper action: if $\bar{\Phi}: G \times M \rightarrow M \times M$ defined by

$$
\Phi(g, z):=(z, \Phi(g, z))
$$

is proper. This is equivalent to: for any two convergent sequences $\left\{m_{n}\right\}$ and $\left\{g_{n} \cdot m_{n}\right\}$ in M, there exists a convergent subsequence $\left\{g_{n_{k}}\right\}$ in G.

Examples of proper actions: compact group actions, $S E(n)$ acting on \mathbb{R}^{n}, Lie groups acting on themselves by translation.

Fundamental facts about proper Lie group actions

 $\Phi: G \times M \rightarrow M$ be a proper action of the Lie group G on the manifold M. Then:(i) The isotropy subgroups G_{m} are compact.
(ii) The orbit space M / G is a Hausdorff topological space (even when G is not Hausdorff).
(iii) If the action is free, M / G is a smooth manifold, and the canonical projection $\pi: M \rightarrow M / G$ defines on M the structure of a smooth left principal G-bundle.
(iv) If all the isotropy subgroups of the elements of M under the G-action are conjugate to a given one H then M / G is a smooth manifold and $\pi: M \rightarrow M / G$ defines the structure of a smooth locally trivial fiber bundle with structure group $N(H) / H$ and fiber G / H.
(v) If the manifold M is paracompact then there exists a G-invariant Riemannian metric on it.
(vi) If the manifold M is paracompact then smooth G invariant functions separate the G-orbits.

Twisted product. Let G be a Lie group and $H \subset G$ a subgroup. Suppose that H acts on the left on the manifold A. The right twisted action of H on the product $G \times A$ is defined by

$$
(g, a) \cdot h=\left(g h, h^{-1} \cdot a\right)
$$

This action is free and proper by the freeness and properness of the action on the G-factor. The twisted product $G \times{ }_{H} A$ is defined as the orbit space $(G \times A) / H$ corresponding to the twisted action.

Tube. Let M be a manifold and G a Lie group acting properly on M. Let $m \in M$ and denote $H:=G_{m}$. A tube around the orbit $G \cdot m$ is a G-equivariant diffeomorphism

$$
\varphi: G \times_{H} A \longrightarrow U
$$

where U is a G-invariant neighborhood of $G \cdot m$ and A is some manifold on which H acts.

Slice Theorem. G a Lie group acting properly on M at the point $m \in M, H:=G_{m}$. There exists a tube

$$
\varphi: G \times_{H} B \longrightarrow U
$$

about $G \cdot m$. B is an open H-invariant neighborhood of 0 in a vector space which is H-equivariantly isomorphic to $T_{m} M / T_{m}(G \cdot m)$, where the H-representation is given by

$$
h \cdot\left(v+T_{m}(G \cdot m)\right):=T_{m} \Phi_{h} \cdot v+T_{m}(G \cdot m)
$$

Slice: $S:=\varphi([e, B])$ so that $U=G \cdot S$.

Dynamical consequences. $X \in \mathfrak{X}(U)^{G}, U \subset M$ open G-invariant, S slice at $m \in U$. Then there exists

- $X_{T} \in \mathfrak{X}(G \cdot S)^{G}, X_{T}(z)=\xi(z)_{M}(z)$ for $z \in G \cdot S$, where ξ : $G \cdot S \rightarrow \mathfrak{g}$ is smooth G-equivariant and $\xi(z) \in \operatorname{Lie}\left(N\left(G_{z}\right)\right)$ for all $z \in G \cdot S$. The flow T_{t} of X_{T} is given by $T_{t}(z)=$ $\exp t \xi(z) \cdot z$, so X_{T} is complete.
- $X_{N} \in \mathfrak{X}(S)^{G_{m}}$
- If $z=g \cdot s$, for $g \in G$ and $s \in S$, then

$$
X(z)=X_{T}(z)+T_{s} \Phi_{g}\left(X_{N}(s)\right)=T_{s} \Phi_{g}\left(X_{T}(s)+X_{N}(s)\right)
$$

- If N_{t} is the flow of X_{N} (on S) then the integral curve of $X \in \mathfrak{X}(U)^{G}$ through $g \cdot s \in G \cdot S$ is

$$
F_{t}(g \cdot s)=g(t) \cdot N_{t}(s)
$$

where $g(t) \in G$ is the solution of

$$
\dot{g}(t)=T_{e} L_{g(t)}\left(\xi\left(N_{t}(s)\right)\right), \quad g(0)=g
$$

This is the tangential-normal decomposition of a G invariant vector field (or Krupa decomposition in bifurcation theory).

Geometric consequences. Orbit type, fixed point, and isotropy type spaces

$$
\begin{aligned}
M_{(H)} & =\left\{z \in M \mid G_{z} \in(H)\right\} \\
M^{H} & =\left\{z \in M \mid H \subset G_{z}\right\} \\
M_{H} & =\left\{z \in M \mid H=G_{z}\right\}
\end{aligned}
$$

are submanifolds.

$$
M_{H} \text { is open in } M^{H}
$$

$m \in M$ is regular if $\exists U \ni m$ such that $\operatorname{dim} \mathcal{O}_{z}=$ $\operatorname{dim} \mathcal{O}_{m}, \forall z \in U$.

Principal Orbit Theorem: M connected. The subset $M^{r e g}$ is connected, open, and dense in $M . M / G$ contains only one principal orbit type, which is a connected open and dense subset of it.

The Stratification Theorem: Let M be a smooth manifold and G a Lie group acting properly on it. The connected components of the orbit type manifolds $M_{(H)}$ and their projections onto orbit space $M_{(H)} / G$ constitute a Whitney stratification of M and M / G, respectively. This stratification of M / G is minimal among all Whitney stratifications of M / G.
G-Codostribution Theorem: Let G be a Lie group acting properly on the smooth manifold M and $m \in M$ a point with isotropy subgroup $H:=G_{m}$. Then

$$
\left(\left(T_{m}(G \cdot m)\right)^{\circ}\right)^{H}=\left\{\mathbf{d} f(m) \mid f \in C^{\infty}(M)^{G}\right\} .
$$

SIMPLE EXAMPLES

- S^{1} acting on \mathbb{R}^{2}

Since S^{1} is Abelian we do not distinguish between orbit types and isotropy types, that is, $\mathbb{R}_{(H)}^{2}=\mathbb{R}_{H}^{2}$ for any isotropy group H of this action.

If $\mathrm{x} \neq 0$ then $S_{\mathrm{x}}^{1}=1$ and $S^{1} \cdot \mathrm{x}$ is the circle centered at the origin of radius $\|\mathrm{x}\|$. The slice is the ray through 0 and $\mathrm{x} .\left(\mathbb{R}^{2}\right)^{r e g}=\mathbb{R}^{2} \backslash\{0\}$, which is open, connected, dense. $\mathbb{R}_{1}^{2}=\left(\mathbb{R}^{2}\right)^{r e g}$ and $\left.\left(\mathbb{R}^{2}\right)^{r e g} / S^{1}=\right] 0, \infty[$.

If $\mathrm{x}=0$, then $S_{0}^{1}=S^{1}$. The slice is $\mathbb{R}^{2} . \mathbb{R}_{0}^{2}=\{0\}$ and $\mathbb{R}_{0}^{2} / S^{1}=\{0\}$.

Finally $\mathbb{R}^{2} / S^{1}=[0, \infty[$.

- $S O(3)$ acting on \mathbb{R}^{3}

Since $\operatorname{SO}(3)$ is non-Abelian, there is a distinction between orbit and isotropy types.

Since every rotation has an axis, if $\mathrm{x} \neq 0$ the isotropy subgroup $\mathrm{SO}(3)_{\mathrm{x}}=S^{1}(\mathrm{x})$, the circle representing the rotations with axis x . So $\left(\mathbb{R}^{3}\right)^{\text {reg }}=\mathbb{R}^{3} \backslash\{0\}$.

The orbit $\mathrm{SO}(3) \cdot \mathrm{x}$ is the sphere centered at the origin with radius $\|\mathbf{x}\|$. The slice at \mathbf{x} is the ray connecting the origin to x .
$\left(\mathbb{R}^{3}\right)_{S^{1}(\mathrm{x})}$ is the set of points in \mathbb{R}^{3} which have the same istropy group $S^{1}(\mathrm{x})$, so it is equal to the line through the origin and x with the origin eliminated. It is disconnected and not $\mathrm{SO}(3)$-invariant.
$\left(\mathbb{R}^{3}\right)_{\left(S^{1}(\mathrm{x})\right)}$ is the set of points in \mathbb{R}^{3} which have the istropy group $S^{1}(\mathrm{x})$ conjugate to $S^{1}(\mathrm{x})$. But any two rotations are conjugate, so $\left(\mathbb{R}^{3}\right)_{\left(S^{1}(\mathrm{x})\right)}=\mathbb{R}^{3} \backslash\{0\}$, which
is again equal in this case to $\left(\mathbb{R}^{3}\right)^{r e g}$. This is connected, open, dense. $\left.\left(\mathbb{R}^{3}\right)_{\left(S^{1}(x)\right)} / \mathrm{SO}(3)=\right] 0, \infty[$.

If $x=0$, the slice is $\mathbb{R}^{3}, \mathrm{SO}(3)_{0}=\mathrm{SO}(3),\left(\mathbb{R}^{3}\right)_{\mathrm{SO}(3)}=$
$\left(\mathbb{R}^{3}\right)_{(\mathrm{SO}(3))}=\{0\}$, and $\left(\mathbb{R}^{3}\right)_{(\mathrm{SO}(3))}=\{0\} / \mathrm{SO}(3)=\{0\}$.

Finally $\mathbb{R}^{3} / \mathrm{SO}(3)=[0, \infty[$.

- Semidirect products
V vector space, G Lie group
$\sigma: G \rightarrow \mathrm{GL}(V)$ representation
$\sigma^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ induced Lie algebra representation:

$$
\xi \cdot v:=\xi_{V}(v):=\sigma^{\prime}(\xi) v:=\left.\frac{d}{d t}\right|_{t=0} \sigma(\exp t \xi) v
$$

$S:=G(S)$ semidirect product: underlying manifold is $G \times V$, multiplication

$$
\left(g_{1}, v_{1}\right)\left(g_{2}, v_{2}\right):=\left(g_{1} g_{2}, v_{1}+\sigma\left(g_{1}\right) v_{2}\right)
$$

for $g_{1}, g_{2} \in G$ and $v_{1}, v_{2} \in V$, identity element is $(e, 0)$ and $(g, v)^{-1}=\left(g^{-1},-\sigma\left(g^{-1}\right) v\right)$.

Note that V is a normal subgroup of S and that $S / V=G$.

Let \mathfrak{g} be the Lie algebra of G and let $\mathfrak{s}:=\mathfrak{g}(S V$ be the Lie algebra of S; it is the semidirect product of \mathfrak{g} with V using the representation σ^{\prime} and its underlying vector space is $\mathfrak{g} \times V$. The Lie bracket on \mathfrak{s} is given by

$$
\left[\left(\xi_{1}, v_{1}\right),\left(\xi_{2}, v_{2}\right)\right]=\left(\left[\xi_{1}, \xi_{2}\right], \sigma^{\prime}\left(\xi_{1}\right) v_{2}-\sigma^{\prime}\left(\xi_{2}\right) v_{1}\right)
$$

for $\xi_{1}, \xi_{2} \in \mathfrak{g}$ and $v_{1}, v_{2} \in V$.

Identify \mathfrak{s}^{*} with $\mathfrak{g}^{*} \times V^{*}$ by using the duality pairing on each factor.

Adjoint action of S on \mathfrak{s} :

$$
\operatorname{Ad}_{(g, u)}(\xi, v)=\left(\operatorname{Ad}_{g} \xi, \sigma(g) v-\sigma^{\prime}\left(\operatorname{Ad}_{g} \xi\right) u\right)
$$

for $(g, u) \in S,(\xi, v) \in \mathfrak{s}$.

Coadjoint action of S on \mathfrak{s}^{*} :

$$
\operatorname{Ad}_{(g, u)^{-1}}^{*}(\nu, a)=\left(\operatorname{Ad}_{g^{-1}}^{*} \nu+\left(\sigma_{u}^{\prime}\right)^{*} \sigma_{*}(g) a, \sigma_{*}(g) a\right),
$$

for $(g, u) \in S,(\nu, a) \in \mathfrak{s}^{*}$, where

$$
\sigma_{*}(g):=\sigma\left(g^{-1}\right)^{*} \in \mathrm{GL}\left(V^{*}\right)
$$

$\sigma_{u}^{\prime}: \mathfrak{g} \rightarrow V$ is the linear map given by $\sigma_{u}^{\prime}(\xi):=\sigma^{\prime}(\xi) u$ and $\left(\sigma_{u}^{\prime}\right)^{*}: V^{*} \rightarrow \mathfrak{g}^{*}$ is its dual.

Clasification of orbits is a major problem!

Do the example of the coadjoint action of $S E(3)=$ $S O(3)\left(\mathbb{R}^{3}\right.$. In this case:
$\sigma: S O(3) \rightarrow \mathrm{GL}\left(\mathbb{R}^{3}\right)$ is usual matrix multiplication on vectors, that is, $\sigma(A) \mathbf{v}:=A \mathbf{v}$, for any $A \in S O(3)$ and $\mathrm{v} \in \mathbb{R}^{3}$.

Dualizing we get $\sigma(A)^{*} \boldsymbol{\Gamma}=A^{*} \boldsymbol{\Gamma}=A^{-1} \boldsymbol{\Gamma}$, for any $\boldsymbol{\Gamma} \in$ $V^{*} \cong \mathbb{R}^{3}$.

The induced Lie algebra representation $\sigma^{\prime}: \mathbb{R}^{3} \cong \mathfrak{s o}(3) \rightarrow$ $\mathfrak{g l}\left(\mathbb{R}^{3}\right)$ is given by $\sigma^{\prime}(\Omega) \mathbf{v}=\sigma_{\mathbf{v}}^{\prime} \Omega=\Omega \times \mathbf{v}$, for any $\Omega, \mathbf{v} \in$ \mathbb{R}^{3}.

Therefore, $\left(\sigma_{\mathbf{v}}^{\prime}\right)^{*} \boldsymbol{\Gamma}=\mathbf{v} \times \boldsymbol{\Gamma}$ and $\sigma^{\prime}(\Omega)^{*} \boldsymbol{\Gamma}=\boldsymbol{\Gamma} \times \boldsymbol{\Omega}$, for any $\mathbf{v} \in V \cong \mathbb{R}^{3}, \Omega \in \mathbb{R}^{3} \cong \mathfrak{s o}(3)$, and $\Gamma \in V^{*} \cong \mathbb{R}^{3}$.

We have $\operatorname{ad}_{\Omega}^{*} \Pi=\Pi \times \Omega$

So all formulas in this case become:

$$
\begin{gathered}
(A, a)(B, b)=(A B, A b+a) \\
(A, a)^{-1}=\left(A^{-1},-A^{-1} \mathbf{a}\right)
\end{gathered}
$$

$$
\begin{gathered}
{\left[(\mathrm{x}, \mathrm{y}),\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right]=\left(\mathrm{x} \times \mathrm{x}^{\prime}, \mathrm{x} \times \mathrm{y}^{\prime}-\mathrm{x}^{\prime} \times \mathrm{y}\right)} \\
\operatorname{Ad}_{(\mathrm{A}, \mathrm{a})}(\mathrm{x}, \mathrm{y})=(\mathbf{A x}, \mathbf{A y}-\mathbf{A x} \times \mathbf{a}) \\
\operatorname{Ad}_{(\mathbf{A}, \mathbf{a})^{-1}}^{*}(\mathbf{u}, \mathbf{v})=(\mathbf{A u}+\mathbf{a} \times \mathbf{A v}, \mathbf{A v})
\end{gathered}
$$

Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ be an orthonormal basis of $\mathfrak{s e}(3)=$ $\mathbb{R}^{3} \times \mathbb{R}^{3}$ such that $\mathbf{e}_{i}=\mathbf{f}_{i}$ for $i=1,2,3$. The dual basis of $\mathfrak{s e}(3)^{*}$ using the dot product is again $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$. Let $\mathbf{e} \in\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and $\mathbf{f} \in\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ be arbitrary. What are the coadjoint orbits?
$\operatorname{SE}(3) \cdot(0,0)=(0,0)$. Since $\operatorname{SE}(3)_{(0,0)}=\operatorname{SE}(3)$ is not compact, the coadjoint action is not proper.

The orbit through $(\mathbf{e}, 0), \mathbf{e} \neq 0$, is

$$
\operatorname{SE}(3) \cdot(\mathbf{e}, 0)=\{(\mathbf{A e}, 0) \mid \mathbf{A} \in \operatorname{SO}(3)\}=S_{\|\mathbf{e}\|}^{2} \times\{\mathbf{0}\}
$$

the two-sphere of radius $\|\mathbf{e}\|$.

The orbit through $(0, f), f \neq 0$, is

$$
\begin{aligned}
\operatorname{SE}(3) \cdot(\mathbf{0}, \mathbf{f}) & =\left\{(\mathbf{a} \times \mathbf{A} \mathbf{f}, \mathbf{A f}) \mid \mathbf{A} \in \mathrm{SO}(3), \mathbf{a} \in \mathbb{R}^{3}\right\} \\
& =\{(\mathbf{u}, \mathbf{A f}) \mid \mathbf{A} \in \mathrm{SO}(3), \mathbf{u} \perp \mathbf{A f}\}=T S_{\|\mathbf{f}\|}^{2}
\end{aligned}
$$

the tangent bundle of the two-sphere of radius $\|f\|$; note that the vector part is the first component. We can think of it also as $T^{*} S_{\|\mathbf{f}\|}^{2}$.

The orbit through (e, f), where $e \neq 0, f \neq 0$, equals
$\operatorname{SE}(3) \cdot(\mathbf{e}, \mathbf{f})=\left\{(\mathbf{A e}+\mathbf{a} \times \mathbf{A f}, \mathbf{A f}) \mid \mathbf{A} \in \operatorname{SO}(3), \mathbf{a} \in \mathbb{R}^{3}\right\}$.
To get a better description of this orbit, consider the smooth map
$\varphi:(\mathbf{A}, \mathbf{a}) \in \operatorname{SE}(3) \mapsto\left(\mathbf{A e}+\mathbf{a} \times \mathbf{A f}-\frac{\mathbf{e} \cdot \mathbf{f}}{\|\mathbf{f}\|^{2}} \mathbf{A f}, \mathbf{A f}\right) \in T S_{\|\mathbf{f}\|}^{2}$,
which is right invariant under the isotropy group

$$
\operatorname{SE}(3)_{(\mathbf{e}, \mathbf{f})}=\{(\mathbf{B}, \mathbf{b}) \mid \mathbf{B e}+\mathbf{b} \times \mathbf{f}=\mathbf{e}, \mathbf{B f}=\mathbf{f}\}
$$

and induces hence a diffeomorphism $\bar{\varphi}: \operatorname{SE}(3) / \operatorname{SE}(3)_{(e, f)} \rightarrow$ $T S_{\|\mathbf{f}\|}^{2}$.

The orbit through (e,f) is diffeomorphic to $\operatorname{SE}(3) / \operatorname{SE}(3)_{(e, f)}$ by the diffeomorphism

$$
(\mathbf{A}, \mathbf{a}) \mapsto \operatorname{Ad}_{(\mathbf{A}, \mathbf{a})^{-1}}^{*}(\mathbf{e}, \mathbf{f}) .
$$

Composing these two maps and identifying $T S^{2}$ and $T^{*} S^{2}$ by the natural Riemannian metric on S^{2}, we get the diffeomorphism $\Phi: \operatorname{SE}(3) \cdot(\mathbf{e}, \mathbf{f}) \rightarrow T^{*} S_{\|f\|}^{2}$ given by

$$
\Phi\left(\mathrm{Ad}_{(\mathbf{A}, \mathbf{a})^{-1}}^{*}(\mathbf{e}, \mathbf{f})\right)=\left(\mathbf{A} \mathbf{e}+\mathbf{a} \times \mathbf{A f}-\frac{\mathbf{e} \cdot \mathbf{f}}{\|\mathbf{f}\|^{2}} \mathbf{A f}, \mathrm{Af}\right) .
$$

Thus this orbit is also diffeomorphic to $T^{*} S_{\|f\|}^{2}$.

- $\operatorname{SE}(3)$ acting on \mathbb{R}^{3}

This action is proper: $(\mathbf{A}, \mathbf{a}) \cdot \mathbf{u}:=\mathbf{A u}+\mathbf{a}$. It is not a representation. The orbit through the origin is \mathbb{R}^{3}, $\mathrm{SE}(3)_{0}=\mathrm{SO}(3)$.

This action is transitive: given $\mathbf{u} \in \mathbb{R}^{3}$ we have $(\mathbf{I}, \mathbf{0}) \cdot \mathbf{u}=$ \mathbf{u}. So there is only one single orbit which is \mathbb{R}^{3}.

EXAMPLE

- Consider \mathbb{R}^{6} with the bracket

$$
\{f, g\}=\sum_{i=1}^{3}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

- S^{1}-action given by

$$
\Phi: \begin{array}{ccc}
S^{1} \times \mathbb{R}^{6} & \longrightarrow & \mathbb{R}^{6} \\
\left(e^{i \phi},(\mathbf{x}, \mathbf{y})\right) & \longmapsto & \left.\longmapsto R_{\phi} \mathbf{x}, R_{\phi} \mathbf{y}\right)
\end{array}
$$

- Hamiltonian of the spherical pendulum

$$
h=\frac{1}{2}\langle y, y\rangle+\left\langle x, e_{3}\right\rangle
$$

- Impose constraint $\langle x, x\rangle=1$
- Angular momentum: $\mathbf{J}(\mathbf{x}, \mathbf{y})=x_{1} y_{2}-x_{2} y_{1}$.

Hillbert-Weyl Theorem: $H \rightarrow \operatorname{Aut}(V)$ representation, H compact Lie group. Then the algebra $\mathcal{P}(V)^{H}$ of H invariant polynomials on V is finitely generated, i.e., $\forall P \in \mathcal{P}(V)^{H}, \exists k \in \mathbb{N}, \pi_{1}, \ldots, \pi_{k} \in \mathcal{P}(V)^{H}, \widehat{P} \in \mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$ s.t. $P=\hat{P} \circ\left(\pi_{1}, \ldots, \pi_{k}\right)$. Minimal set is a Hilbert basis.

Hilbert basis of the algebra of S^{1}-invariant polynomials on \mathbb{R}^{6} is given by

$$
\begin{array}{lll}
\sigma_{1}=x_{3} & \sigma_{3}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2} & \sigma_{5}=x_{1}^{2}+x_{2}^{2} \\
\sigma_{2}=y_{3} & \sigma_{4}=x_{1} y_{1}+x_{2} y_{2} & \sigma_{6}=x_{1} y_{2}-x_{2} y_{1}
\end{array}
$$

Semialgebraic relations

$$
\sigma_{4}^{2}+\sigma_{6}^{2}=\sigma_{5}\left(\sigma_{3}-\sigma_{2}^{2}\right), \quad \sigma_{3} \geq 0, \quad \sigma_{5} \geq 0
$$

Hilbert map $\pi: v \in V \mapsto\left(\pi_{1}(v), \ldots, \pi_{k}(v)\right) \in \mathbb{R}^{k}$ separates H-orbits. So $V / H \cong \operatorname{range}(\pi)$.

Schwarz Theorem: The map $f \in C^{\infty}\left(\mathbb{R}^{k}\right) \mapsto f \circ\left(\pi_{1}, \ldots \pi_{k}\right)$ $\in C^{\infty}(V)^{H}$ is surjective.

Mather Theorem: The quotient presheaf of smooth functions on V / H is isomorphic to the presheaf of Whitney smooth functions on $\pi(V)$ induced by the sheaf of smooth functions on \mathbb{R}^{k}.

Tarski-Seidenberg Theorem: Since π is a polynomial map, range $(\pi) \subset \mathbb{R}^{k}$ is semi-algebraic.

Theorem: Every semi-algebraic set admits a canonical Whitney stratification into a finite number of semialgebraic subsets.

Bierstone Theorem: This canonical stratification of $\pi(V)$ coincides with the stratification of V / H into orbit type manifolds.

These theorems can be used to explicitly describe quotient spaces of representations as semi-algebraic subsets of a (high dimensional) Euclidean space.

Return to our concrete case of the spherical pendulum.

The Hilbert map is given by

$$
\begin{aligned}
\sigma: T \mathbb{R}^{3} & \longrightarrow \\
(\mathbf{x}, \mathrm{y}) & \longmapsto\left(\mathbb{R}^{6}(\mathrm{x}, \mathrm{y}), \ldots, \sigma_{6}(\mathrm{x}, \mathrm{y})\right)
\end{aligned}
$$

The S^{1}-orbit space $T \mathbb{R}^{3} / S^{1}$ can be identified with the semialgebraic variety $\sigma\left(T \mathbb{R}^{3}\right) \subset \mathbb{R}^{6}$, defined by these relations.
$T S^{2}$ is a submanifold of \mathbb{R}^{6} given by

$$
T S^{2}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{6} \mid\langle\mathbf{x}, \mathbf{x}\rangle=1,\langle\mathbf{x}, \mathbf{y}\rangle=0\right\}
$$

$T S^{2}$ is S^{1}-invariant.
$T S^{2} / S^{1}$ can be thought of the semialgebraic variety $\sigma\left(T S^{2}\right)$ defined by the previous relations and

$$
\sigma_{5}+\sigma_{1}^{2}=1 \quad \sigma_{4}+\sigma_{1} \sigma_{2}=0
$$

which allow us to solve for σ_{4} and σ_{5}, yielding

$$
\begin{aligned}
& T S^{2} / S^{1}=\sigma\left(T S^{2}\right)=\left\{\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{6}\right) \in \mathbb{R}^{4} \mid\right. \\
& \sigma_{1}^{2} \sigma_{2}^{2}+\sigma_{6}^{2}=\left(1-\sigma_{1}^{2}\right)\left(\sigma_{3}-\sigma_{2}^{2}\right), \\
&\left.\left|\sigma_{1}\right| \leq 1, \sigma_{3} \geq 0\right\} .
\end{aligned}
$$

The Poisson bracket is

$\{\cdot, \cdot\}^{T S^{2} / S^{1}}$	σ_{1}	σ_{2}	σ_{3}	σ_{6}
σ_{1}	0	$1-\sigma_{1}^{2}$	$2 \sigma_{2}$	0
σ_{2}	$-\left(1-\sigma_{1}^{2}\right)$	0	$-2 \sigma_{1} \sigma_{3}$	0
σ_{3}	$-2 \sigma_{2}$	$2 \sigma_{1} \sigma_{3}$	0	0
σ_{6}	0	0	0	0

The reduced Hamiltonian is

$$
H=\frac{1}{2} \sigma_{3}+\sigma_{1}
$$

If $\mu \neq 0$ then $\left(T S^{2}\right) \mu:=\mathbf{J}^{-1}(\mu) / S^{1}$ appears as the graph of the smooth function

$$
\sigma_{3}=\frac{\sigma_{2}^{2}+\mu^{2}}{1-\sigma_{1}^{2}}, \quad\left|\sigma_{1}\right|<1
$$

The case $\mu=0$ is singular and $\left(T S^{2}\right)_{0}:=\mathbf{J}^{-1}(0) / S^{1}$ is not a smooth manifold.

ABSTRACT SYMMETRY REDUCTION

The case of general vector fields

M manifold
$G \times M \rightarrow M$ smooth proper Lie group action
$X \in \mathfrak{X}(M)^{G}, G$-equivariant vector field
F_{t} flow of $X \in \mathfrak{X}(M)^{G}$

Law of conservation of isotropy:
$M_{H}:=\left\{m \in M \mid G_{m}=H\right\}$, the H-isotropy type submanifold, is preserved by F_{t}.
M_{H} is, in general, not closed in M.

Properness of the action implies:

- G_{m} is compact
- the (connected components of) M_{H} are embedded submanifolds of M
$N(H) / H$ (where $N(H)$ denotes the normalizer of H in G) acts freely and properly on M_{H}.
$\pi_{H}: M_{H} \rightarrow M_{H} /(N(H) / H)$ projection
$i_{H}: M_{H} \hookrightarrow M$ inclusion
X induces a unique H-isotropy type reduced vector field X^{H} on $M_{H} /(N(H) / H)$ by

$$
X^{H} \circ \pi_{H}=T \pi_{H} \circ X \circ i_{H},
$$

whose flow F_{t}^{H} is given by

$$
F_{t}^{H} \circ \pi_{H}=\pi_{H} \circ F_{t} \circ i_{H}
$$

If G is compact and the action is linear, then the construction of $M_{H} /(N(H) / H)$ can be implemented in a very explicit and convenient manner by using the invariant polynomials of the action and the theorems of Hilbert and Schwarz-Mather.

The Hamiltonian case

(M, ω) Poisson manifold, G connected Lie group with Lie algebra $\mathfrak{g}, G \times M \rightarrow M$ free proper symplectic action
$\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$ momentum map if $X_{\mathbf{J} \xi}=\xi_{M}$, where $\mathbf{J}^{\xi}:=$ $\langle\mathbf{J}, \xi\rangle$ and ξ_{M} is the infinitesimal generator given by $\xi \in \mathfrak{g}$
$\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$ (infinitesimally) equivariant if $\mathbf{J}(g \cdot m)=$ $\operatorname{Ad}_{g^{-1}}^{*} \mathbf{J}(m), \forall g \in G\left(T_{m} \mathbf{J}\left(\xi_{M}(m)\right)=-\operatorname{ad}_{\xi}^{*} \mathbf{J}(m)\right.$ $\left.\mathbf{J}^{[\xi, \eta]}=\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}\right)$.

Proof Take the derivative on M of the defining relation $\mathbf{J}^{\xi}:=\langle\mathbf{J}, \xi\rangle$. Get: $\mathbf{d} \mathbf{J}^{\xi}(m)\left(v_{m}\right)=\left\langle T_{m} \mathbf{J}\left(v_{m}\right), \xi\right\rangle$. Hence

$$
\begin{aligned}
\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}(m) & =X_{\mathbf{J}^{\eta}}\left[\mathbf{J}^{\xi}\right](m)=\mathbf{d} \mathbf{J}^{\xi}(m)\left(X_{\mathbf{J}^{\eta}}(m)\right) \\
& =\left\langle T_{m} \mathbf{J}\left(X_{\mathbf{J}^{\eta}}(m)\right), \xi\right\rangle=\left\langle T_{m} \mathbf{J}\left(\eta_{M}(m)\right), \xi\right\rangle .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mathbf{J}^{[\xi, \eta]}(m) & =\langle\mathbf{J}(m),[\xi, \eta]\rangle=-\left\langle\mathbf{J}(m), \mathrm{ad}_{\eta} \xi\right\rangle \\
& =-\left\langle\mathrm{ad}_{\eta}^{*} \mathbf{J}(m), \xi\right\rangle
\end{aligned}
$$

Noether's Theorem: The fibers of J are preserved by the Hamiltonian flows associated to G-invariant Hamiltonians. Equivalently, \mathbf{J} is conserved along the flow of any G-invariant Hamiltonian.

Proof Let $h \in C^{\infty}(M)$ be G-invariant, so $h \circ \Phi_{g}=h$ for any $g \in G$. Take the derivative of this relation at $g=e$ and get $£_{\xi_{M}} h=0$. But $\xi_{M}=X_{\mathbf{J} \xi}$ so we get $\left\{\mathbf{J}^{\xi}, h\right\}=$ $\left\langle\mathbf{d} h, X_{\mathbf{J} \xi}\right\rangle=£_{\xi_{M}} h=0$, which shows that $\mathbf{J}^{\xi} \in C^{\infty}(M)$ is constant on the flow of X_{h} for any $\xi \in \mathfrak{g}$, that is \mathbf{J} is conserved. \square

Example: lifted actions on cotangent bundles. Φ :
$G \times Q \rightarrow Q$ Lie group action, $g \cdot q:=\Phi(g, q)$. Its lift to the cotangent bundle $T^{*} Q$ is

$$
g \cdot \alpha_{q}:=\Psi_{g} \alpha_{q}:=T_{g \cdot q}^{*} \Phi_{g^{-1}}\left(\alpha_{q}\right)
$$

Ψ admits the following equivariant momentum map:

$$
\left\langle\mathbf{J}\left(\alpha_{q}\right), \xi\right\rangle=\left\langle\alpha_{q}, \xi_{Q}(q)\right\rangle, \quad \forall \alpha_{q} \in T^{*} Q, \quad \forall \xi \in \mathfrak{g} .
$$

Very important so we will give two complete proofs.

Proof 1 Recall that the cotangent lift of a diffeomorphism preserves the canonical one-form Θ on $T^{*} Q$. Hence $\psi_{\exp t \xi}^{*} \Theta=\Theta$. Take $\left.\frac{d}{d t}\right|_{t=0}$ of this:
$0=£_{\xi_{T^{*} Q}} \Theta=\mathbf{i}_{\xi_{T^{*} Q}} \mathrm{~d} \Theta+\mathrm{di}_{\xi_{T^{*} Q}} \Theta=-\mathbf{i}_{\xi_{T^{*} Q}} \Omega+\mathbf{d}\left\langle\Theta, \xi_{T^{*} Q}\right\rangle$
which shows that a momentum map exists and is equal to $\mathbf{J}^{\xi}=\left\langle\Theta, \xi_{T^{*} Q}\right\rangle$. However, $\forall \alpha_{q} \in T^{*} Q$, we have

$$
\mathbf{J}^{\xi}\left(\alpha_{q}\right)=\left\langle\Theta\left(\alpha_{q}\right), \xi_{T^{*} Q}\left(\alpha_{q}\right)\right\rangle=\left\langle\alpha_{q}, T_{\alpha_{q}} \pi_{Q}\left(\xi_{T^{*} Q}\left(\alpha_{q}\right)\right)\right\rangle .
$$

But

$$
\begin{aligned}
& T_{\alpha_{q}} \pi_{Q}\left(\xi_{T^{*} Q}\left(\alpha_{q}\right)\right)=T_{\alpha_{q} \pi_{Q}}\left(\left.\frac{d}{d t}\right|_{t=0} \Psi_{\exp t \xi}\left(\alpha_{q}\right)\right) \\
& \quad=\left.\frac{d}{d t}\right|_{t=0}\left(\pi_{Q} \circ \Psi_{\exp t \xi}\right)\left(\alpha_{q}\right)=\left.\frac{d}{d t}\right|_{t=0}\left(\Phi_{\exp t \xi} \circ \pi_{Q}\right)\left(\alpha_{q}\right) \\
& \quad=\xi_{Q}(\bar{q}),
\end{aligned}
$$

which proves the formula.

We prove G-equivariance. Let $g \in G, \xi \in \mathfrak{g}, \alpha_{q} \in T^{*} Q$.

$$
\begin{aligned}
& \left\langle\mathbf{J}\left(g \cdot \alpha_{q}\right), \xi\right\rangle=\left\langle g \cdot \alpha_{q}, \xi_{Q}(g \cdot q)\right\rangle \\
& \quad=\left\langle\alpha_{q},\left(T_{g \cdot q} \Phi_{g}^{-1} \circ \xi_{Q} \circ \Phi_{g}\right)(q)\right\rangle=\left\langle\alpha_{q},\left(\operatorname{Ad}_{g^{-1}} \xi\right)_{Q}(q)\right\rangle \\
& \quad=\left\langle\mathbf{J}\left(\alpha_{q}\right), \operatorname{Ad}_{g^{-1}} \xi\right\rangle=\left\langle\operatorname{Ad}_{g^{-1}}^{*} \mathbf{J}\left(\alpha_{q}\right), \xi\right\rangle
\end{aligned}
$$

Proof 2 Define the momentum function of $X \in \mathfrak{X}(Q)$

$$
\mathcal{P}: \mathfrak{X}(Q) \rightarrow C^{\infty}\left(T^{*} Q\right) \quad \text { by } \quad \mathcal{P}(X)\left(\alpha_{q}\right):=\left\langle\alpha_{q}, X(q)\right\rangle
$$

for any $\alpha_{q} \in T_{q}^{*} Q$. In coordinates $\mathcal{P}\left(q^{i}, p_{i}\right)=X^{j}\left(p_{i}\right) p_{j}$.
$\mathcal{L}\left(T^{*} Q\right)$ is the space of smooth functions linear on the fibers. In coordinates $F \in \mathcal{L}\left(T^{*} Q\right) \Longleftrightarrow F\left(q^{i}, p_{i}\right)=$ $X^{j}\left(q^{i}\right) p_{j}$ for some functions X^{j}. If $H\left(q^{i}, p_{i}\right)=Y^{j}\left(q^{i}\right) p_{j}$,

$$
\begin{aligned}
\{F, H\}\left(q^{i}, p_{i}\right) & =\frac{\partial F}{\partial q^{j}} \frac{\partial H}{\partial p_{j}}-\frac{\partial H}{\partial q^{j}} \frac{\partial F}{\partial p_{j}} \\
& =\frac{\partial X^{i}}{\partial q^{j}} p_{i} Y^{k} \delta_{k}^{j}-\frac{\partial Y^{i}}{\partial q^{j}} p_{i} X^{k} \delta_{k}^{j} \\
& =\left(\frac{\partial X^{i}}{\partial q^{j}} p_{i} Y^{j}-\frac{\partial Y^{i}}{\partial q^{j}} p_{i} X^{j}\right) p_{i}
\end{aligned}
$$

so $\mathcal{L}\left(T^{*} Q\right)$ is a Lie subalgebra of $C^{\infty}\left(T^{*} Q\right)$.

Momentum Commutator Lemma: The Lie algebras
(i) $(\mathfrak{X}(Q),[\cdot, \cdot])$ of vector fields on Q
(ii) Hamiltonian vector fields X_{F} on $T^{*} Q$ with $F \in \mathcal{L}\left(T^{*} Q\right)$ are isomorphic. Each of these Lie algebras is antiisomorphic to $\left(\mathcal{L}\left(T^{*} Q\right),\{\cdot, \cdot\}\right)$. In particular, we have

$$
\{\mathcal{P}(X), \mathcal{P}(Y)\}=-\mathcal{P}([X, Y])
$$

Proof $\mathcal{P}: \mathfrak{X}(Q) \rightarrow \mathcal{L}\left(T^{*} Q\right)$ is linear and satisfies the relation above because

$$
[X, Y]^{i}=\frac{\partial Y^{i}}{\partial q^{j}} X^{j}-\frac{\partial X^{i}}{\partial q^{j}} Y^{j}
$$

implies

$$
-\mathcal{P}([X, Y])=\left(\frac{\partial X^{i}}{\partial q^{j}} p_{i} Y^{j}-\frac{\partial Y^{i}}{\partial q^{j}} p_{i} X^{j}\right) p_{i}=\{\mathcal{P}(X), \mathcal{P}(Y)\}
$$

as we saw above. So, \mathcal{P} is a Lie algebra anti-homomorphism.
$\mathcal{P}(X)=0 \Longleftrightarrow \mathcal{P}(X)\left(\alpha_{q}\right):=\left\langle\alpha_{q}, X(q)\right\rangle, \forall \alpha_{q} \in T^{*} Q$
$X(q)=0, \forall q \in Q$, so \mathcal{P} is injective.

For each $F \in \mathcal{L}\left(T^{*} Q\right)$, define $X(F) \in \mathfrak{X}(Q)$ by

$$
\left\langle\alpha_{q}, X(F)(q)\right\rangle:=F\left(\alpha_{q}\right) .
$$

Then $\mathcal{P}(X(F))=F$, so \mathcal{P} is also surjective.

We know that $F \mapsto X_{F}$ is a Lie algebra anti-homomorphism (by the Jacobi identity for $\{\cdot, \cdot\}$) from $\left(\mathcal{L}\left(T^{*} Q\right),\{\cdot, \cdot\}\right)$ to ($\left.\left\{X_{F} \mid F \in \mathcal{L}\left(T^{*} Q\right)\right\},[\cdot, \cdot]\right)$. This map is surjective by definition. Moreover, if $X_{F}=0$ then F is constant on $T^{*} Q$, hence equal to zero becuase F is linear on the fibers. \square

If $X \in \mathfrak{X}(Q)$ has flow φ_{t}, then the flow of $X_{\mathcal{P}(X)}$ on $T^{*} Q$ is $T^{*} \varphi_{-t}$. Call $X^{\prime}:=X_{\mathcal{P}(X)}$ the cotangent lift of X.

Proof $\pi_{Q}: T^{*} Q \rightarrow Q$ cotangent bundle projection. Differentiate $\pi_{Q} \circ T^{*} \varphi_{-t}=\varphi_{t} \circ \pi_{Q}$ at $t=0$ and get
$T \pi_{Q} \circ Y=X \circ \pi_{Q}, \quad$ where $\quad Y\left(\alpha_{q}\right):=\left.\frac{d}{d t}\right|_{t=0} T^{*} \varphi_{-t}\left(\alpha_{q}\right)$

So, $T^{*} \varphi_{-t}$ is the flow of Y, by construction. Since $T^{*} \varphi_{-t}$ preserves the canonical one-form $\Theta \in \Omega^{1}\left(T^{*} Q\right)$, it follows that $£_{Y} \Theta=0$, hence

$$
\mathbf{i}_{Y} \Omega=-\mathbf{i}_{Y} \mathbf{d} \Theta=\operatorname{di}_{Y} \Theta-£_{Y} \Theta=\operatorname{di}_{Y} \Theta
$$

By definition of Θ, we have

$$
\begin{aligned}
\mathbf{i}_{Y} \Theta\left(\alpha_{q}\right) & =\left\langle\Theta\left(\alpha_{q}\right), Y\left(\alpha_{q}\right)\right\rangle=\left\langle\alpha_{q}, T_{\alpha_{q}} \pi_{Q}\left(Y\left(\alpha_{q}\right)\right)\right\rangle \\
& =\left\langle\alpha_{q}, X(q)\right\rangle=\mathcal{P}(X)\left(\alpha_{q}\right) \Longleftrightarrow \mathbf{i}_{Y} \Theta=\mathcal{P}(X),
\end{aligned}
$$

that is, $\mathrm{i}_{Y} \Omega=\mathrm{d} \mathcal{P}(X) \Longleftrightarrow Y=X_{\mathcal{P}(X)}$. \square
Note:

$$
\left[X_{\mathcal{P}(X)}, X_{\mathcal{P}(Y)}\right]=-X_{\{\mathcal{P}(X), \mathcal{P}(Y)\}}=-X_{-\mathcal{P}([X, Y])}=X_{\mathcal{P}([X, Y])}
$$

\mathfrak{g} acts on the left on Q, so it acts on $T^{*} Q$ by $\xi_{T^{*} Q}:=$ $X_{\mathcal{P}\left(\xi_{Q}\right)}$. This \mathfrak{g}-action on $T^{*} Q$ is Hamiltonian with infinitesimally equivariant momentum map $\mathbf{J}: P \rightarrow \mathfrak{g}^{*}$ given by

$$
\left\langle\mathbf{J}\left(\alpha_{q}\right), \xi\right\rangle=\left\langle\alpha_{q}, \xi_{Q}(q)\right\rangle=\mathcal{P}\left(\xi_{Q}\right)\left(\alpha_{q}\right)
$$

If G, with Lie algebra \mathfrak{g}, acts on Q and hence on $T^{*} Q$ by cotangent lift, then \mathbf{J} is equivariant.

In coordinates, $\xi_{Q}^{i}\left(q^{j}\right)=\xi^{a} A_{a}^{i}\left(q^{j}\right) \Rightarrow J_{a} \xi^{a}=p_{i} \xi_{Q}^{i}=$ $p_{i} A_{a}^{i} \xi^{a}$, i.e.,

$$
J_{a}\left(q^{j}, p_{j}\right)=p_{i} A_{a}^{i}\left(q^{j}\right)
$$

Proof For Lie group actions, the theorem follows directly from the previous one, because the infinitesimal generator is given by $\xi_{T^{*} Q}:=X_{\mathcal{P}\left(\xi_{Q}\right)}$, so the momentum map exists and is given by $\mathbf{J}^{\xi}=\mathcal{P}\left(\xi_{Q}\right)$ for all $\xi \in \mathfrak{g}$.

For Lie algebra actions we need to check first that the cotangent lift gives a canonical action. So, for $\xi, \eta \in \mathfrak{g}$,

$$
\begin{aligned}
\xi_{T^{*} Q}[\{F, H\}] & =X_{\mathcal{P}\left(\xi_{Q}\right)}[\{F, H\}] \\
& =\left\{X_{\mathcal{P}\left(\xi_{Q}\right)}[F], H\right\}+\left\{F, X_{\mathcal{P}\left(\xi_{Q}\right)}[H]\right\} \\
& =\left\{\xi_{T^{*} Q}[F], H\right\}+\left\{F, \xi_{T^{*} Q}[H]\right\}
\end{aligned}
$$

Done!

Remember that the momentum map $\mathbf{J}: T^{*} Q \rightarrow \mathfrak{g}^{*}$ is given by $\mathbf{J}^{\xi}=\mathcal{P}\left(\xi_{Q}\right)$ for any $\xi \in \mathfrak{g}$.

Recall the formula $[\xi, \eta]_{Q}=-\left[\xi_{Q}, \eta_{Q}\right]$. Then

$$
\begin{aligned}
\mathbf{J}^{[\xi, \eta]} & =\mathcal{P}\left([\xi, \eta]_{Q}\right)=-\mathcal{P}\left(\left[\xi_{Q}, \eta_{Q}\right]\right)=\left\{\mathcal{P}\left(\xi_{Q}\right), \mathcal{P}\left(\eta_{Q}\right)\right\} \\
& =\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}
\end{aligned}
$$

so \mathbf{J} is infinitesimally equivariant.

Now assume that G has Lie algebra \mathfrak{g} and that G acts on Q and hence on $T^{*} Q$ by cotangent lift. Remember:
$g \cdot \alpha_{q}:=T_{g \cdot q}^{*} \Phi_{g^{-1}} \alpha_{q}$.

We prove G-equivariance. Let $g \in G, \xi \in \mathfrak{g}, \alpha_{q} \in T^{*} Q$.

$$
\begin{aligned}
\left\langle\mathbf{J}\left(g \cdot \alpha_{q}\right), \xi\right\rangle & =\left\langle g \cdot \alpha_{q}, \xi_{Q}(g \cdot q)\right\rangle \\
& =\left\langle\alpha_{q},\left(T_{g \cdot q} \Phi_{g}^{-1} \circ \xi_{Q} \circ \Phi_{g}\right)(q)\right\rangle \\
& =\left\langle\alpha_{q},\left(\operatorname{Ad}_{g^{-1}} \xi\right)_{Q}(q)\right\rangle \\
& =\left\langle\mathbf{J}\left(\alpha_{q}\right), \operatorname{Ad}_{g^{-1}} \xi\right\rangle \\
& =\left\langle\operatorname{Ad}_{g^{-1}}^{*} \mathbf{J}\left(\alpha_{q}\right), \xi\right\rangle
\end{aligned}
$$

If $\mathrm{J}: M \rightarrow \mathfrak{g}^{*}$ is an infinitesimally equivariant momentum map for a left Hamiltonian action of \mathfrak{g} on a Poisson manifold M, then \mathbf{J} is a Poisson map:

$$
\mathbf{J}^{*}\left\{F_{1}, F_{2}\right\}_{+}=\left\{\mathbf{J}^{*} F_{1}, \mathbf{J}^{*} F_{2}\right\}, \quad \forall F_{1}, F_{2} \in C^{\infty}\left(\mathfrak{g}^{*}\right)
$$

Proof Infinitesimal equivariance $\Leftrightarrow\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}=\mathbf{J}{ }^{[\xi, \eta]}$. Let $m \in M, \xi=\delta F_{1} / \delta \mu, \eta=\delta F_{2} / \delta \mu, \mu:=\mathbf{J}(m) \in \mathfrak{g}^{*}$. Then

$$
\begin{aligned}
\mathbf{J}^{*}\left\{F_{1}, F_{2}\right\}_{+}(m) & =\left\langle\mu,\left[\frac{\delta F_{1}}{\delta \mu}, \frac{\delta F_{2}}{\delta \mu}\right]\right\rangle=\langle\mu,[\xi, \eta]\rangle \\
& =\mathbf{J}^{[\xi, \eta]}(m)=\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}(m) .
\end{aligned}
$$

But for any $m \in M$ an $v_{m} \in T_{m} M$, we have

$$
\begin{aligned}
& \mathbf{d}\left(F_{1} \circ \mathbf{J}\right)(m)\left(v_{m}\right)=\mathbf{d} F_{1}(\mu)\left(T_{m} \mathbf{J}\left(v_{m}\right)\right) \\
& \quad=\left\langle T_{m} \mathbf{J}\left(v_{m}\right), \frac{\delta F_{1}}{\delta \mu}\right\rangle=\mathbf{d} \mathbf{J}^{\xi}(m)\left(v_{m}\right)
\end{aligned}
$$

i.e., $F_{1} \circ \mathbf{J}$ and \mathbf{J}^{ξ} have equal m-derivatives. The Poisson bracket depends only on the point values of the first derivatives and hence

$$
\left\{F_{1} \circ \mathbf{J}, F_{2} \circ \mathbf{J}\right\}(m)=\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}(m)
$$

Special case: $M=T^{*} G, G$-action on $T^{*} G$ is the lift of left translation. We get: $\left\{F_{1}, F_{2}\right\}_{+} \circ \mathbf{J}_{L}=\left\{F_{1} \circ \mathbf{J}_{L}, F_{2} \circ\right.$ $\left.\mathbf{J}_{L}\right\}$. Restrict this relation to \mathfrak{g}^{*} and get $\left\{F_{1}, F_{2}\right\}_{+}(\mu)=$ $\left\{F_{1} \circ \mathbf{J}_{L}, F_{2} \circ \mathbf{J}_{L}\right\}(\mu)$. But $\left(F_{i} \circ \mathbf{J}_{L}\right)\left(\alpha_{g}\right)=F_{i}\left(T_{e}^{*} R_{g} \alpha_{g}\right)=:$ $\left(F_{i}\right)_{R}\left(\alpha_{g}\right)$, where $\left(F_{i}\right)_{R}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is the right invariant extension of F_{i} to $T^{*} G$. So we get

$$
\left\{F_{1}, F_{2}\right\}_{+}(\mu)=\left\{\left(F_{1}\right)_{R},\left(F_{2}\right)_{R}\right\}(\mu) .
$$

Identifying the set of functions on \mathfrak{g}^{*} with the set of right(left)-invariant functions on $T^{*} G$ endows \mathfrak{g}^{*} with the \pm Lie-Poisson structure.

This is an a posteriori proof, i.e., one needs to already know the formula for the Lie-Poisson bracket.

Example: linear momentum. Take the phase space of the N-particle system, that is, $T^{*} \mathbb{R}^{3 N}$. The additive group \mathbb{R}^{3} acts on it by
$\mathbf{v} \cdot\left(\mathbf{q}_{i}, \mathbf{p}^{i}\right)=\left(\mathbf{q}_{i}+\mathbf{v}, \mathbf{p}^{i}\right) \Rightarrow \xi_{\mathbb{R}^{3}}\left(\mathbf{q}_{i}\right)=\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N} ; \xi, \ldots, \xi\right)$.

$$
\begin{aligned}
\mathbf{J}: T^{*} \mathbb{R}^{3 N} & \longrightarrow \operatorname{Lie}\left(\mathbb{R}^{3}\right) \simeq \mathbb{R}^{3} \\
\left(\mathbf{q}_{i}, \mathbf{p}^{i}\right) & \longmapsto \sum_{i=1}^{N} \mathbf{p}^{i}
\end{aligned}
$$

which is the classical linear momentum.
Indeed, by the general formula ofcotangent lifted actions, we have

$$
\left\langle\mathbf{J}\left(\mathbf{q}_{i}, \mathbf{p}^{i}\right), \xi\right\rangle=\sum_{i=1}^{N} \mathbf{p}^{i} \cdot \xi .
$$

Example: angular momentum. Let $\mathrm{SO}(3)$ act on \mathbb{R}^{3} and then, by lift, on $T^{*} \mathbb{R}^{3}$, that is, $A \cdot(\mathbf{q}, \mathbf{p})=(A \mathbf{q}, A \mathbf{p})$.

$$
\begin{aligned}
& \mathbf{J}: T^{*} \mathbb{R}^{3} \longrightarrow \mathfrak{s o}(3)^{*} \simeq \mathbb{R}^{3} \\
& (\mathbf{q}, \mathrm{p}) \longmapsto \quad \mathbf{q} \times \mathrm{p} .
\end{aligned}
$$

which is the classical angular momentum.

Let's do it using the formula for cotangent lifted actions. If $\xi \in \mathbb{R}^{3}, \widehat{\xi} \mathbf{v}:=\xi \times \mathbf{v}$, for any $\mathbf{v} \in \mathbb{R}^{3}, \widehat{\xi} \in \mathfrak{s o}(3)$, then

$$
\xi_{\mathbb{R}^{3}}(\mathbf{v})=\left.\frac{d}{d t}\right|_{t=0} e^{t \widehat{\xi}} \mathbf{v}=\widehat{\xi} \mathbf{v}=\xi \times \mathbf{v}
$$

so that

$$
\langle\mathbf{J}(\mathbf{q}, \mathbf{p}), \xi\rangle=\mathbf{p} \cdot \xi_{\mathbb{R}^{3}}(\mathbf{q})=\mathbf{p} \cdot(\xi \times \mathbf{q})=(\mathbf{q} \times \mathbf{p}) \cdot \xi
$$

which shows that

$$
\mathbf{J}(\mathbf{q}, \mathbf{p})=\mathbf{q} \times \mathbf{p}
$$

Example: Momentum map of the cotangent lifted

 left and right translations. Let G act on itself on the left: $L_{g}(h):=g h$. The infinitesimal generator of $\xi \in \mathfrak{g}$ is$$
\xi_{G}^{L}(h):=\left.\frac{d}{d t}\right|_{t=0} L_{\exp t \xi}(h)=\left.\frac{d}{d t}\right|_{t=0} R_{h}(\exp t \xi)=T_{e} R_{h} \xi
$$

The infinitesimal generator of left translation is given by the tangent map of right translation: $\xi_{G}^{L}(h)=T_{e} R_{h} \xi$.

The momentum map of the cotangent lift of left transIation $\mathbf{J}_{L}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is hence given by

$$
\left\langle\mathbf{J}_{L}\left(\alpha_{g}\right), \xi\right\rangle=\left\langle\alpha_{g}, \xi_{G}^{L}(g)\right\rangle=\left\langle\alpha_{g}, T_{e} R_{g} \xi\right\rangle=\left\langle T_{e}^{*} R_{g} \alpha_{g}, \xi\right\rangle
$$

Hence $\mathrm{J}_{L}\left(\alpha_{g}\right)=T_{e}^{*} R_{g} \alpha_{g}$.

For the cotangent lift of right translation, $\xi_{G}^{R}(g)=T_{e} L_{g} \xi$ and $\mathrm{J}_{R}\left(\alpha_{g}\right)=T_{e}^{*} L_{g} \alpha_{g}$.

Example: symplectic linear actions. Let (V, ω) be a symplectic linear space and let G be a subgroup of the linear symplectic group, acting naturally on V.

$$
\langle\mathbf{J}(v), \xi\rangle=\frac{1}{2} \omega\left(\xi_{V}(v), v\right)
$$

This \mathbf{J} is not that of a cotangent lifted action.

Example: Cayley-Klein parameters and the Hopf fibration. Consider the natural action of $\operatorname{SU}(2)$ on \mathbb{C}^{2}. The symplectic form on \mathbb{C}^{2} is minus the imaginary part of the Hermitian inner product.

Since this action is by isometries of the Hermitian metric, it is automatically symplectic and therefore has a momentum map $\mathbf{J}: \mathbb{C}^{2} \rightarrow \mathfrak{s u}(2)^{*}$ given, as above, by

$$
\langle\mathbf{J}(z, w), \xi\rangle=\frac{1}{2} \omega\left(\xi(z, w)^{\top},(z, w)^{\top}\right), \quad z, w \in \mathbb{C}, \xi \in \mathfrak{s u}(2)
$$

The Lie algebra $\mathfrak{s u}(2)$ of $\operatorname{SU}(2)$ consists of 2×2 skew Hermitian matrices of trace zero. This Lie algebra is isomorphic to $\mathfrak{s o}(3)$ and therefore to $\left(\mathbb{R}^{3}, \times\right)$ by the isomorphism given by

$$
\begin{aligned}
& \mathbf{x}=\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3} \longmapsto \\
& \quad \widetilde{\mathbf{x}}:=\frac{1}{2}\left[\begin{array}{cc}
-i x^{3} & -i x^{1}-x^{2} \\
-i x^{1}+x^{2} & i x^{3}
\end{array}\right] \in \mathfrak{s u}(2) .
\end{aligned}
$$

Thus we have

$$
[\tilde{\mathbf{x}}, \tilde{\mathbf{y}}]=(\mathrm{x} \times \mathrm{y})^{\sim}, \quad \forall \mathrm{x}, \mathrm{y} \in \mathbb{R}^{3}
$$

Other useful formulas are

$$
\operatorname{det}(2 \tilde{\mathbf{x}})=\|\mathbf{x}\|^{2} \quad \text { and } \quad \operatorname{trace}(\tilde{\mathbf{x}} \tilde{\mathbf{y}})=-\frac{1}{2} \mathbf{x} \cdot \mathbf{y}
$$

Identify $\mathfrak{s u}(2)^{*}$ with \mathbb{R}^{3} by the map $\mu \in \mathfrak{s u}(2)^{*} \mapsto \breve{\mu} \in \mathbb{R}^{3}$ defined by

$$
\check{\mu} \cdot \mathbf{x}:=-2\langle\mu, \tilde{\mathbf{x}}\rangle
$$

for any $\mathrm{x} \in \mathbb{R}^{3}$.

The symplectic form on \mathbb{C}^{2} is given by minus the imaginary part of the Hermitian inner product.

With these notations, the momentum map $\check{\mathbf{J}}: \mathbb{C}^{2} \rightarrow \mathbb{R}^{3}$ can be explicitly computed in coordinates: for any $\mathbf{x} \in \mathbb{R}^{3}$ we have

$$
\begin{aligned}
\check{\mathbf{J}}(z, w) \cdot \mathbf{x} & =-2\langle\mathbf{J}(z, w), \tilde{\mathbf{x}}\rangle \\
& =\frac{1}{2} \operatorname{Im}\left(\left[\begin{array}{cc}
-i x^{3} & -i x^{1}-x^{2} \\
-i x^{1}+x^{2} & i x^{3}
\end{array}\right]\left[\begin{array}{c}
z \\
w
\end{array}\right] \cdot\left[\begin{array}{c}
z \\
w
\end{array}\right]\right) \\
& =-\frac{1}{2}\left(2 \operatorname{Re}(w \bar{z}), 2 \operatorname{Im}(w \bar{z}),|z|^{2}-|w|^{2}\right) \cdot \mathbf{x}
\end{aligned}
$$

Therefore

$$
\check{\mathbf{J}}(z, w)=-\frac{1}{2}\left(2 w \bar{z},|z|^{2}-|w|^{2}\right) \in \mathbb{R}^{3}
$$

$\breve{\mathbf{J}}$ is a Poisson map from \mathbb{C}^{2}, endowed with the canonical symplectic structure, to \mathbb{R}^{3}, endowed with the + Lie Poisson structure. Therefore, $-\breve{\mathbf{J}}: \mathbb{C}^{2} \rightarrow \mathbb{R}^{3}$ is a canonical map, if \mathbb{R}^{3} has the - Lie-Poisson bracket relative to which the free rigid body equations are Hamiltonian. Pulling back the Hamiltonian

$$
H(\boldsymbol{\Pi})=\frac{1}{2} \Pi \cdot \mathbb{I}^{-1} \Pi, \quad \mathbb{I}^{-1} \Pi:=\left(\frac{\Pi_{1}}{I_{1}}, \frac{\Pi_{2}}{I_{2}}, \frac{\Pi_{3}}{I_{3}}\right)
$$

to \mathbb{C}^{2} gives a Hamiltonian function (called collective) on $\mathbb{C}^{2} . \mathbb{I}=\operatorname{diag}\left(I_{1}, I_{2}, I_{3}\right)$ is the moment of inertia tensor written in a principal axis body frame of the free rigid body.

The classical Hamilton equations for this function are therefore projected by $-\breve{\mathbf{J}}$ to the rigid body equations

$$
\dot{\Pi}=\Pi \times \mathbb{I}^{-1} \Pi
$$

In this context, the variables (z, w) are called the CayleyKlein parameters. They represent a first attempt to understand the rigid body equations as a Hamiltonian system, before the introduction of Poisson manifolds. In quantum mechanics, the same variables are called the Kustaanheimo-Stiefel coordinates. A similar construction was carried out in fluid dynamics making the Euler equations a Hamiltonian system relative to the socalled Clebsch variables.

Now notice that if

$$
(z, w) \in S^{3}:=\left\{\left.(z, w) \in \mathbb{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\}
$$

then $\|-\breve{\mathbf{J}}(z, w)\|=1 / 2$, so that $-\left.\breve{\mathbf{J}}\right|_{S^{3}}: S^{3} \rightarrow S_{1 / 2}^{2}$, where $S_{1 / 2}^{2}$ is the sphere in \mathbb{R}^{3} of radius $1 / 2$.

It is also easy to see that $-\left.\widetilde{\mathbf{J}}\right|_{S^{3}}$ is surjective and that its fibers are circles. Indeed, given $\left(x^{1}, x^{2}, x^{3}\right)=\left(x^{1}+\right.$ $\left.i x^{2}, x^{3}\right)=\left(r e^{i \psi}, x^{3}\right) \in S_{1 / 2}^{2}$, the inverse image of this point is

$$
\begin{aligned}
& -\check{\mathbf{J}}^{-1}\left(r e^{i \psi}, x^{3}\right)= \\
& \qquad\left\{\left.\left(e^{i \theta} \sqrt{\frac{1}{2}+x^{3}}, e^{i \varphi} \sqrt{\frac{1}{2}-x^{3}}\right) \in S^{3} \right\rvert\, e^{i(\theta-\varphi+\psi)}=1\right\}
\end{aligned}
$$

One recognizes now that $-\left.\breve{\mathbf{J}}\right|_{S^{3}}: S^{3} \rightarrow S_{1 / 2}^{2}$ is the Hopf fibration. In other words:
the momentum map of the $\mathrm{SU}(2)$-action on \mathbb{C}^{2}, the Cayley-Klein parameters, the Kustaanheimo-Stiefel coordinates, and the family of Hopf fibrations on concentric three-spheres in \mathbb{C}^{2} are the same map.

Constructive proof of the Lie-Poisson

Reduction Theorem

- If $\xi \in \mathfrak{g}$, denote by $\xi_{L} \in \mathfrak{X}(G)$ the left invariant vector field whose value at e is ξ, i.e., $\xi_{L}(g)=T_{e} L_{g}(\xi), \forall g \in G$.

$$
\left[\xi_{L}, \eta_{L}\right]=[\xi, \eta]_{L}
$$

by definition of the Lie bracket on \mathfrak{g}.

- Left trivialize $T^{*} G$:

$$
\lambda: T^{*} G \ni \alpha_{g} \mapsto\left(g, T_{e}^{*} L_{g} \alpha_{g}\right)=\left(g, \mathbf{J}_{R}\left(\alpha_{g}\right)\right) \in G \times \mathfrak{g}^{*}
$$

λ is an equivariant diffeomorphism relative to the lift of left translation on $T^{*} G$ and the left G-action on $G \times \mathfrak{g}^{*}$ given by $g \cdot(h, \mu):=(g h, \mu)$. Therefore, $\left(T^{*} G\right) / G \cong$ $\left(G \times \mathfrak{g}^{*}\right) / G=\mathfrak{g}^{*}$ and hence $\mathbf{J}_{R}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is the composition of this diffeomorphism with the canonical projection $T^{*} G \rightarrow\left(T^{*} G\right) / G$. Consequently, \mathfrak{g}^{*} inherits a Poisson structure, which we call, for the time being $\{\cdot, \cdot\}_{-}$, uniquely characterized by

$$
\left\{F_{1}, F_{2}\right\}_{-} \circ \mathbf{J}_{R}=\left\{F_{1} \circ \mathbf{J}_{R}, F_{2} \circ \mathbf{J}_{R}\right\}, \quad \forall F_{1}, F_{2} \in C^{\infty}\left(\mathfrak{g}^{*}\right)
$$

GOAL: Compute this bracket.

To do this, it is enough to work with linear functions F_{1}, F_{2} because the Poisson bracket depends only on the values of the differentials of the functions at each point. If F_{i} is linear, then $F_{i}(\mu)=\left\langle\mu, \frac{\delta F_{i}}{\delta \mu}\right\rangle$, for some constant element $\frac{\delta F_{i}}{\delta \mu} \in \mathfrak{g}$. If $\mu:=T_{e}^{*} L_{g} \alpha_{g} \in \mathfrak{g}^{*}$, we get

$$
\begin{aligned}
\left(F_{i}\right)_{L}\left(\alpha_{g}\right) & =F_{i}\left(T_{e}^{*} L_{g} \alpha_{g}\right)=\left\langle T_{e}^{*} L_{g} \alpha_{g}, \frac{\delta F_{i}}{\delta \mu}\right\rangle=\left\langle\alpha_{g}, T_{e} L_{g} \frac{\delta F_{i}}{\delta \mu}\right\rangle \\
& =\left\langle\alpha_{g},\left(\frac{\delta F_{i}}{\delta \mu}\right)_{L}(g)\right\rangle=\mathcal{P}\left(\left(\frac{\delta F_{i}}{\delta \mu}\right)_{L}\right)\left(\alpha_{g}\right)
\end{aligned}
$$

Thus, we get

$$
\begin{align*}
\left\{\left(F_{1}\right)_{L},\left(F_{2}\right)_{L}\right\}(\mu) & =\left\{\mathcal{P}\left(\left(\frac{\delta F_{1}}{\delta \mu}\right)_{L}\right)_{L}, \mathcal{P}\left(\left(\frac{\delta F_{2}}{\delta \mu}\right)_{L}\right)\right\}(\mu) \\
& =-\mathcal{P}\left(\left[\left(\frac{\delta F_{1}}{\delta \mu}\right)_{L},\left(\frac{\delta F_{2}}{\delta \mu}\right)_{L}\right]\right)(\mu) \\
& =-\mathcal{P}\left(\left[\frac{\delta F_{1}}{\delta \mu}, \frac{\delta F_{2}}{\delta \mu}\right]_{L}\right)(\mu) \\
& =-\left\langle\mu,\left[\frac{\delta F_{1}}{\delta \mu}, \frac{\delta F_{2}}{\delta \mu}\right]\right\rangle
\end{align*}
$$

This theorem and general considerations implies the following.

Lie-Poisson reduction of dynamics

Assume that $H \in C^{\infty}\left(T^{*} G\right)$ is left(right)-invariant. Then $H^{\mp}:=H \mid \mathfrak{g}^{*}$ satisfy $H=H^{-} \circ \mathbf{J}_{R}$ and $H=H^{+} \circ \mathbf{J}_{L}$. The flow F_{t} on $T^{*} G$ and the flow F_{t}^{\mp} of $X_{H \mp}$ on \mathfrak{g}_{\mp}^{*} are related by

$$
\mathbf{J}_{R} \circ F_{t}=F_{t}^{-} \circ \mathbf{J}_{R}, \quad \mathbf{J}_{L} \circ F_{t}=F_{t}^{+} \circ \mathbf{J}_{L}
$$

Remember that \mathbf{J}_{L} is conserved.
If $\alpha(t) \in T_{g(t)} G$ is an integral curve of X_{H} in $T^{*} G$, let $\mu(t):=\mathbf{J}_{R}(\alpha(t)), \nu(t):=\mathbf{J}_{L}(\alpha(t))=\nu=$ const. Then

$$
\nu=\mathrm{Ad}_{g(t)^{-1}}^{*} \mu(t)
$$

Reconstruction of dynamics

Differentiate in t the previous relation:

$$
0=\operatorname{Ad}_{g(t)^{-1}}^{*}\left(-\operatorname{ad}_{g(t)^{-1} \dot{g}(t)}^{*} \mu(t)+\frac{d \mu}{d t}\right)
$$

However, $\mu(t)$ satisfies the Lie-Poisson equations

$$
\frac{d \mu}{d t}=\mathrm{ad}_{\delta H^{-} / \delta \mu}^{*} \mu \Longleftrightarrow \mathrm{ad}_{-g(t)^{-1} \dot{g}(t)+\delta H^{-} / \delta \mu}^{*}=0
$$

A sufficient condition for this to hold is $g(t)^{-1} \dot{g}(t)=$ $\delta H^{-} / \delta \mu$. So, the integral curve of the unreduced system on $T^{*} G$ is found by solving:

$$
\frac{d \mu(t)}{d t}=\operatorname{ad}_{\frac{\delta H^{-}}{\delta \mu}(t)}^{*} \mu(t), \quad \frac{d g(t)}{d t}=T_{e} L_{g(t)} \frac{\delta H^{-}}{\delta \mu}(t)
$$

and putting

$$
\alpha(t):=T_{g(t)}^{*} L_{g(t)^{-1}} \mu(t)
$$

The expression of the push forward $\lambda_{*} X_{H} \in \mathfrak{X}(G \times \mathfrak{g})$ is

$$
\left(\lambda_{*} X_{H}\right)(g, \mu)=\left(T_{e} L_{g} \frac{\delta H^{-}}{\delta \mu}, \mu, \mathrm{ad}_{\frac{\delta H^{-}}{\delta \mu}}^{*} \mu\right) \in T_{g} G \times T_{\mu} \mathfrak{g}^{*} .
$$

Long direct proof.

More precise properties of the momentum map

- Freeness of the action is equivalent to the regularity of the momentum map: range $T_{m} \mathbf{J}=\left(\mathfrak{g}_{m}\right)^{\circ}$.

Proof: We have $T_{m} M=\left\{X_{f}(m) \mid f \in C^{\infty}(U)\right\}, U$ open neighborhood of m. For any $\xi \in \mathfrak{g}$ we have

$$
\begin{gathered}
\left\langle T_{m} \mathbf{J}\left(X_{f}(m)\right), \xi\right\rangle=\mathrm{d} \mathbf{J}^{\xi}(m)\left(X_{f}(m)\right)=\left\{\mathbf{J}^{\xi}, f\right\}(m) \\
=-\mathbf{d} f(m)\left(X_{\mathbf{J} \xi}(m)\right)=-\mathrm{d} f(m)\left(\xi_{M}(m)\right) .
\end{gathered}
$$

So

$$
\begin{aligned}
& \xi \in \mathfrak{g}_{m} \Longleftrightarrow \xi_{M}(m)=0 \Longleftrightarrow \\
& \mathrm{~d} f(m)\left(\xi_{M}(m)\right)=0, \forall f \in C^{\infty}(U) \Longleftrightarrow \\
& \left\langle T_{m} \mathbf{J}\left(X_{f}(m)\right), \xi\right\rangle=0, \forall f \in C^{\infty}(U) \Longleftrightarrow \\
& \xi \in\left(\operatorname{range} T_{m} \mathbf{J}\right)^{\circ} \quad \square
\end{aligned}
$$

- $\operatorname{ker} T_{m} \mathbf{J}=(\mathfrak{g} \cdot m)^{\omega}$.

Proof: $v_{m} \in \operatorname{ker} T_{m} \mathbf{J}$ if and only if for all $\xi \in \mathfrak{g}$

$$
\begin{aligned}
0 & =\left\langle T_{m} \mathbf{J}\left(v_{m}\right), \xi\right\rangle=\mathbf{d} \mathbf{J}^{\xi}(m)\left(v_{m}\right)=\omega(m)\left(X_{\mathbf{J}} \xi(m), v_{m}\right) \\
& =\omega(m)\left(\xi_{M}(m), v_{m}\right) \\
& \Longleftrightarrow v_{m} \in(\mathfrak{g} \cdot m)^{\omega}
\end{aligned}
$$

- Existence: The obstruction is the vanishing of the map

$$
\begin{array}{ccc}
\rho: \mathfrak{g} /[\mathfrak{g}, \mathfrak{g}] & \longrightarrow H^{1}(M, \mathbb{R}) \\
{[\xi]} & \longmapsto & {\left[\mathrm{i}_{\xi_{M}} \omega\right]}
\end{array}
$$

- Equivariance: When is $(\mathfrak{g},[\cdot, \cdot]) \rightarrow\left(C^{\infty}(M),\{\cdot, \cdot\}\right)$ defined by $\xi \mapsto \mathbf{J}^{\xi}, \xi \in \mathfrak{g}$, a Lie algebra homomorphism, that is,

$$
\mathbf{J}^{[\xi, \eta]}=\left\{\mathbf{J}^{\xi}, \mathbf{J}^{\eta}\right\}, \quad \xi, \eta \in \mathfrak{g} .
$$

Answer: if and only if

$$
T_{z} \mathbf{J}\left(\xi_{M}(z)\right)=-\operatorname{ad}_{\xi}^{*} \mathbf{J}(z)
$$

A momentum map that satisfies this relation in called infinitesimally equivariant.

Among all possible choices of momentum maps for a given action, there is at most one infinitesimally equivariant one.

Sufficient conditions: Assume $H^{1}(\mathfrak{g} ; \mathbb{R})=H^{2}(\mathfrak{g} ; \mathbb{R})=$ 0 . By the Whitehead lemmas, this is the case if \mathfrak{g} is semisimple.

- \mathbf{J} is G-equivariant when

$$
\mathrm{Ad}_{g^{-1}}^{*} \circ \mathbf{J}=\mathbf{J} \circ \Phi_{g}
$$

- If G is compact \mathbf{J} can be chosen G-equivariant
- If G is connected then infinitesimal equivariance is equivalent to equivariance.

Define the non-equivariance one-cocycle, or the the Souriau cocycle, associated to \mathbf{J} is the map

$$
\begin{aligned}
\sigma: G & \longrightarrow \\
g & \longmapsto \mathbf{J}\left(\Phi_{g}(z)\right)-\mathrm{Ad}_{g^{-1}}^{*}(\mathbf{J}(z)) .
\end{aligned}
$$

Supposse that M is connected. Then:
(i) The definition of σ does not depend on the choice of $z \in M . M$ connected is a crucial hypothesis.
(ii) The mapping σ is a \mathfrak{g}^{*}-valued one-cocycle on G with respect to the coadjoint representation of G on \mathfrak{g}^{*}.

Define the affine action of G on \mathfrak{g}^{*} with cocycle σ by

$$
\begin{aligned}
& \equiv: G \times \mathfrak{g}^{*} \longrightarrow \mathrm{Ad}_{g^{-1}}^{*} \mu+\sigma(g) . \\
&(g, \mu) \mathfrak{g}^{*} \\
&
\end{aligned}
$$

三 determines a left action of G on \mathfrak{g}^{*}. The momentum map $\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$ is equivariant with respect to the symplectic action Φ on M and the affine action \equiv on \mathfrak{g}^{*}.

The affine orbits \mathcal{O}_{μ} are also symplectic with G-invariant symplectic structure given by

$$
\omega_{\mathcal{O}_{\mu}}^{ \pm}(\nu)\left(\xi_{\mathfrak{g}^{*}}(\nu), \eta_{\mathfrak{g}^{*}}(\nu)\right)= \pm\langle\nu,[\xi, \eta]\rangle \mp \Sigma(\xi, \eta),
$$

where the infinitesimal non-equivariance two-cocycle $\Sigma \in Z^{2}(\mathfrak{g}, \mathbb{R})$ is given by

$$
\begin{aligned}
\Sigma: \mathfrak{g} \times \mathfrak{g} & \longrightarrow \Sigma \\
(\xi, \eta) & \longmapsto \Sigma(\xi, \eta)=\mathrm{d} \widehat{\sigma}_{\eta}(e) \cdot \xi,
\end{aligned}
$$

with $\widehat{\sigma}_{\eta}: G \rightarrow \mathbb{R}$ defined by $\widehat{\sigma}_{\eta}(g)=\langle\sigma(g), \eta\rangle$.

Reduction Lemma:

$$
\mathfrak{g}_{\mathbf{J}(m)} \cdot m=\mathfrak{g} \cdot m \cap \operatorname{ker} T_{m} \mathbf{J}=\mathfrak{g} \cdot m \cap(\mathfrak{g} \cdot m)^{\omega}
$$

Proof: $\xi_{M}(m) \in \mathfrak{g} \cdot m \cap \operatorname{ker} T_{m} \mathbf{J} \Longleftrightarrow 0=T_{m} \mathbf{J}\left(\xi_{M}(m)\right)=$
$-\operatorname{ad}_{\xi}^{*} \mathbf{J}(m)+\Sigma(\xi, \cdot) \Longleftrightarrow \xi \in \mathfrak{g}_{\mathbf{J}}(m)$

The geometry of the reduction lemma.

Momentum maps and isotropy type manifolds.

- $m \in M$. Then $M_{G_{m}}$ is a symplectic submanifold of M.

Proof: By the Tube Theorem for proper actions, $M_{G_{m}}$ is an embedded submanifold and $T_{z} M_{G_{m}}=T_{z} M^{G_{m}}=$ $\left(T_{z} M\right)^{G_{m}}, \forall z \in M_{G_{m}}$. To show that $i^{*} \omega$ is a symplectic form, where $i: M_{G_{m}} \hookrightarrow M$, it suffices to show that $\left(i^{*} \omega\right)(z)$ is nondegenerate on $T_{z} M_{G_{m}}$, for all $z \in M_{G_{m}}$.
H compact Lie group and (V, ω) symplectic representation space. Then V^{H} is a symplectic subspace of V.

Let $\langle\langle\rangle$,$\rangle be a H$-invariant inner product on V, possible by compactness of H (average some inner product). Define $\mathbb{T}: V \rightarrow V$ by $\langle\langle u, v\rangle\rangle=\omega(u, \mathbb{T} v)$ and note that it is a H-equivariant isomorphism. Therefore, $\mathbb{T}\left(V^{H}\right) \subset V^{H}$. Assume that $u \in V^{H}$ satisfies $\omega(u, v)=0, \forall v \in V^{H}$. But then $0=\omega(u, \mathbb{T} v)=\langle\langle u, v\rangle\rangle, \forall v \in V^{H}$. Put here $v=u$ and then the positive definiteness of $\langle\langle\rangle$,$\rangle implies that$ $u=0$. \square

- Let $M_{G_{m}}^{m}$ be the connected component of $M_{G_{m}}$ containing m and

$$
N\left(G_{m}\right)^{m}:=\left\{n \in N\left(G_{m}\right) \mid n \cdot z \in M_{G_{m}}^{m} \text { for all } z \in M_{G_{m}}^{m}\right\}
$$

$N\left(G_{m}\right)^{m}$ is a closed subgroup of $N\left(G_{m}\right)$ that contains the connected component of the identity. So it is also open and hence $\operatorname{Lie}\left(N\left(G_{m}\right)^{m}\right)=\operatorname{Lie}\left(N\left(G_{m}\right)\right)$.

In addition, $\left(N\left(G_{m}\right) / G_{m}\right)^{m}=N\left(G_{m}\right)^{m} / G_{m}$ so that

$$
\operatorname{Lie}\left(N\left(G_{m}\right)^{m} / G_{m}\right)=\operatorname{Lie}\left(N\left(G_{m}\right) / G_{m}\right)
$$

- $L^{m}:=N\left(G_{m}\right)^{m} / G_{m}$ acts freely properly and canonically on $M_{G_{m}}^{m}$ by $\Psi\left(n G_{m}, z\right):=n \cdot z$.

Proof: The map ψ is clearly well defined. It is easy to see it is a left action. It is also obvious that it is free. It is proper, because $N\left(G_{m}\right)^{m}$ is closed. Still need to show that it is canonical.

For any $l=n G_{m} \in L^{m}$ we have

$$
\Psi_{l}^{*}\left(i^{*} \omega\right)=\left(i \circ \Psi_{l}\right)^{*} \omega=\left(\Phi_{n} \circ i\right)^{*} \omega=i^{*} \Phi_{n}^{*} \omega=i^{*} \omega .
$$

\square

- The free proper canonical action of $L^{m}:=N\left(G_{m}\right)^{m} / G_{m}$ on $M_{G_{m}}^{m}$ has a momentum map $\mathrm{J}_{L^{m}}: M_{G_{m}}^{m} \rightarrow\left(\operatorname{Lie}\left(L^{m}\right)\right)^{*}$ given by

$$
\mathbf{J}_{L^{m}}(z):=\wedge\left(\left.\mathbf{J}\right|_{M_{G m}^{m}} ^{m}(z)-\mathbf{J}(m)\right), \quad z \in M_{G_{m}}^{m}
$$

In this expression $\wedge:\left(\mathfrak{g}_{m}^{\circ}\right)^{G_{m}} \rightarrow\left(\operatorname{Lie}\left(L^{m}\right)\right)^{*}$ denotes the natural L^{m}-equivariant isomorphism given by

$$
\left\langle\Lambda(\beta),\left.\frac{d}{d t}\right|_{t=0}(\exp t \xi) G_{m}\right\rangle=\langle\beta, \xi\rangle
$$

for any $\beta \in\left(\mathfrak{g}_{m}^{\circ}\right)^{G_{m}}, \xi \in \operatorname{Lie}\left(N\left(G_{m}\right)^{m}\right)=\operatorname{Lie}\left(N\left(G_{m}\right)\right)$.

- The non-equivariance one-cocycle $\tau: M_{G_{m}}^{m} \rightarrow\left(\operatorname{Lie}\left(L^{m}\right)\right)^{*}$ of the momentum map $\mathrm{J}_{L^{m}}$ is given by the map

$$
\tau(l)=\wedge(\sigma(n)+n \cdot \mathbf{J}(m)-\mathbf{J}(m))
$$

CONVEXITY

$\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$ coadjoint equivariant. G, M compact. The intersection of the image of \mathbf{J} with a Weyl chamber is a compact and convex polytope. This polytope is referred to as the momentum polytope.

Delzant's theorem proves that the symplectic toric manifolds are classified by their momentum polytopes. A Delzant polytope in \mathbb{R}^{n} is a convex polytope that is also:
(i) Simple: there are n edges meeting at each vertex.
(ii) Rational: the edges meeting at a vertex p are of the form $p+t u_{i}, 0 \leq t<\infty, u_{i} \in \mathbb{Z}^{n}, i \in\{1, \ldots, n\}$.
(iii) Smooth: the vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ can be chosen to be an integral basis of \mathbb{Z}^{n}.

Delzant's Theorem can be stated by saying that
\{symplectic toric manifolds\} \longrightarrow \{Delzant polytopes\} $\left(M, \omega, \mathbb{T}^{n}, \mathbf{J}: M \rightarrow \mathbb{R}^{n}\right)$

is a bijection.

Marsden-Weinstein Reduction Theorem

- J : $M \rightarrow \mathfrak{g}^{*}$ equivariant (not essential)
- $\mu \in \mathbf{J}(M) \subset \mathfrak{g}^{*}$ regular value of \mathbf{J}
- G_{μ}-action on $\mathbf{J}^{-1}(\mu)$ is free and proper, where $G_{\mu}:=$ $\left\{g \in G \mid \operatorname{Ad}_{g}^{*} \mu=\mu\right\}$
then $\left(M_{\mu}:=\mathbf{J}^{-1}(\mu) / G_{\mu}, \omega_{\mu}\right)$ is symplectic:

$$
\pi_{\mu}^{*} \omega_{\mu}=i_{\mu}^{*} \omega
$$

$i_{\mu}: \mathbf{J}^{-1}(\mu) \hookrightarrow M$ inclusion,
$\pi_{\mu}: \mathbf{J}^{-1}(\mu) \rightarrow \mathbf{J}^{-1}(\mu) / G_{\mu}$ projection.

The flow F_{t} of $X_{h}, h \in C^{\infty}(M)^{G}$, leaves the connected components of $\mathbf{J}^{-1}(\mu)$ invariant and commutes with the G-action, so it induces a flow F_{t}^{μ} on M_{μ} by

$$
\pi_{\mu} \circ F_{t} \circ i_{\mu}=F_{t}^{\mu} \circ \pi_{\mu}
$$

F_{t}^{μ} is Hamiltonian on $\left(M_{\mu}, \omega_{\mu}\right)$ for the reduced Hamiltonian $h_{\mu} \in C^{\infty}\left(M_{\mu}\right)$ given by

$$
h_{\mu} \circ \pi_{\mu}=h \circ i_{\mu}
$$

Moreover, if $h, k \in C^{\infty}(M)^{G}$, then $\{h, k\}_{\mu}=\left\{h_{\mu}, k_{\mu}\right\}_{M_{\mu}}$.

Proof: Since π_{μ} is a surjective submersion, if ω_{μ} exists, it is uniquely determined by the condition $\pi_{\mu}^{*} \omega_{\mu}=i_{\mu}^{*} \omega$. This relation also defines ω_{μ} by:

$$
\omega_{\mu}\left(\pi_{\mu}(z)\right)\left(T_{z} \pi_{\mu}(v), T_{z} \pi_{\mu}(w)\right):=\omega(z)(v, w),
$$

for $z \in \mathbf{J}^{-1}(\mu)$ and $v, w \in T_{z} \mathbf{J}^{-1}(\mu)$.

To see that this is a good definition of ω_{μ}, let

$$
y=\Phi_{g}(z), \quad v^{\prime}=T_{z} \Phi_{g}(v), \quad w^{\prime}=T_{z} \Phi_{g}(w) T_{z} \mathbf{J}^{-1}(\mu),
$$

where $g \in G_{\mu}$. If, in addition $T_{g \cdot z} \pi_{\mu}\left(v^{\prime \prime}\right)=T_{g \cdot z} \pi_{\mu}\left(v^{\prime}\right)=$ $T_{z} \pi_{\mu}(v)$ and $T_{g \cdot z} \pi_{\mu}\left(w^{\prime \prime}\right)=T_{g \cdot z} \pi_{\mu}\left(w^{\prime}\right)=T_{z} \pi_{\mu}(w)$, then $v^{\prime \prime}=v^{\prime}+\xi_{M}(g \cdot z) \in T_{z} \mathbf{J}^{-1}(\mu)$ and $w^{\prime \prime}=w^{\prime}+\eta_{M}(g \cdot z) \in$ $T_{z} \mathbf{J}^{-1}(\mu)$ for some $\xi, \eta \in \mathfrak{g}_{\mu}$ and hence

$$
\begin{aligned}
\omega(y)\left(v^{\prime \prime}, w^{\prime \prime}\right) & =\omega(y)\left(v^{\prime}, w^{\prime}\right) \quad \text { (by the reduction lemma) } \\
& =\omega\left(\Phi_{g}(z)\right)\left(T_{z} \Phi_{g}(v), T_{z} \Phi_{g}(w)\right) \\
& =\left(\Phi_{g}^{*} \omega\right)(z)(v, w) \\
& =\omega(z)(v, w) \quad \text { (action is symplectic). }
\end{aligned}
$$

Thus ω_{μ} is well-defined. It is smooth since $\pi_{\mu}^{*} \omega_{\mu}$ is smooth. Since $d \omega=0$, we get

$$
\pi_{\mu}^{*} \mathbf{d} \omega_{\mu}=\mathbf{d} \pi_{\mu}^{*} \omega_{\mu}=\mathbf{d} i_{\mu}^{*} \omega=i_{\mu}^{*} \mathbf{d} \omega=0
$$

Since π_{μ} is a surjective submersion, we conclude that $\mathrm{d} \omega_{\mu}=0$.

To prove nondegeneracy of ω_{μ}, suppose that

$$
\omega_{\mu}\left(\pi_{\mu}(z)\right)\left(T_{z} \pi_{\mu}(v), T_{z} \pi_{\mu}(w)\right)=0
$$

for all $w \in T_{z}\left(\mathbf{J}^{-1}(\mu)\right)$. This means that

$$
\omega(z)(v, w)=0 \quad \text { for all } \quad w \in T_{z}\left(\mathbf{J}^{-1}(\mu)\right)
$$

i.e., that $v \in\left(T_{z}\left(\mathbf{J}^{-1}(\mu)\right)\right)^{\omega}=T_{z}(G \cdot z)$ by the Reduction Lemma. Hence

$$
v \in T_{z}\left(\mathbf{J}^{-1}(\mu)\right) \cap T_{z}(G \cdot z)=T_{z}\left(G_{\mu} \cdot z\right)
$$

so that $T_{z} \pi_{\mu}(v)=0$, thus proving nondegeneracy of ω_{μ}.

Let $Y \in \mathfrak{X}\left(M_{\mu}\right)$ be the vector field whose flow is F_{t}^{μ}.
Therefore, from $\pi_{\mu} \circ F_{t} \circ i_{\mu}=F_{t}^{\mu} \circ \pi_{\mu}$ it follows

$$
T \pi_{\mu} \circ X_{h}=Y \circ T \pi_{\mu} \quad \text { on } \quad \mathbf{J}^{-1}(\mu)
$$

Also, $h_{\mu} \circ \pi_{\mu}=h \circ i_{\mu}$ implies that $\mathbf{d} h_{\mu} \circ T \pi_{\mu}=\mathbf{d} h$ on $\mathbf{J}^{-1}(\mu)$. Therefore, on $\mathbf{J}^{-1}(\mu)$ we get

$$
\begin{aligned}
\pi_{\mu}^{*}\left(\mathbf{i}_{Y} \omega_{\mu}\right) & =\mathbf{i}_{X_{h}} \pi_{\mu}^{*} \omega_{\mu}=\mathbf{i}_{X_{h}} i_{\mu}^{*} \omega=i_{\mu}^{*}\left(\mathbf{i}_{X_{h}} \omega\right)=i_{\mu}^{*} \mathbf{d} h \\
& =\mathbf{d}\left(h \circ i_{\mu}\right)=\mathbf{d}\left(h_{\mu} \circ \pi_{\mu}\right)=\pi_{\mu}^{*} \mathbf{d} h_{\mu} \\
& =\pi_{\mu}^{*}\left(\mathbf{i}_{X_{h \mu}} \omega_{\mu}\right)
\end{aligned}
$$

so $\mathbf{i}_{Y} \omega_{\mu}=\mathbf{i}_{X_{h}} \omega_{\mu}$ since π_{μ} is a surjective submersion. Hence $Y=X_{h_{\mu}}$ because ω_{μ} is nondegenerate.

Finally, for $m \in \mathbf{J}^{-1}(\mu)$ we have

$$
\begin{aligned}
\left\{h_{\mu}\right. & \left., k_{\mu}\right\}_{M_{\mu}}\left(\pi_{\mu}(m)\right)=\omega_{\mu}\left(\pi_{\mu}(m)\right)\left(X_{h_{\mu}}\left(\pi_{\mu}(m)\right), X_{k_{\mu}}\left(\pi_{\mu}(m)\right)\right) \\
& =\omega_{\mu}\left(\pi_{\mu}(m)\right)\left(T_{m} \pi_{\mu}\left(X_{h}(m)\right), T_{m} \pi_{\mu}\left(X_{k}(m)\right)\right) \\
& =\left(\pi_{\mu}^{*} \omega_{\mu}\right)(m)\left(X_{h}(m), X_{k}(m)\right) \\
& =\left(i_{\mu}^{*} \omega\right)(m)\left(X_{h}(m), X_{k}(m)\right) \\
& =\omega(m)\left(X_{h}(m), X_{k}(m)\right) \\
& =\{h, k\}(m) \\
& =\{h, k\}_{\mu}\left(\pi_{\mu}(m)\right)
\end{aligned}
$$

which shows that $\left\{h_{\mu}, k_{\mu}\right\}_{M_{\mu}}=\{h, k\}_{\mu}$.

Problems with the reduction procedure

- Momentum map inexistent
- How does one recover the conservation of isotropy?
- M_{μ} is not a smooth manifold
- G is discrete so momentum map is zero
- M is not a symplectic but a Poisson manifold

ORBIT REDUCTION

Same set up as in the symplectic reduction theorem: M connected, G acting symplectically, freely, and properly on M with an equivariant momentum map $\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$.

The connected components of the point reduced spaces M_{μ} can be regarded as the symplectic leaves of the Poisson manifold $\left(M / G,\{\cdot, \cdot\}_{M / G}\right)$ in the following way. Form a map $\left[i_{\mu}\right]: M_{\mu} \rightarrow M / G$ defined by selecting an equivalence class $[z]_{G_{\mu}} \in M_{\mu}$ for $z \in \mathbf{J}^{-1}(\mu)$ and sending it to the class $[z]_{G} \in M / G$. This map is checked to be well-defined and smooth.

We then have the commutative diagram

One then checks that $\left[i_{\mu}\right]$ is a Poisson injective immersion. Moreover, the $\left[i_{\mu}\right]$-images in M / G of the connected components of the symplectic manifolds $\left(M_{\mu}, \Omega_{\mu}\right)$ are its symplectic leaves. As sets,

$$
\left[i_{\mu}\right]\left(M_{\mu}\right)=\mathbf{J}^{-1}\left(\mathcal{O}_{\mu}\right) / G
$$

where $\mathcal{O}_{\mu} \subset \mathfrak{g}^{*}$ is the coadjoint orbit through $\mu \in \mathfrak{g}^{*}$.

$$
M_{\mathcal{O}_{\mu}}:=\mathbf{J}^{-1}\left(\mathcal{O}_{\mu}\right) / G
$$

is called the orbit reduced space associated to the orbit \mathcal{O}_{μ}. The smooth manifold structure (and hence the topology) on $M_{\mathcal{O}_{\mu}}$ is the one that makes

$$
\left[i_{\mu}\right]: M_{\mu} \rightarrow M_{\mathcal{O}_{\mu}}
$$

into a diffeomorphism.

An injectively immersed submanifold of S of Q is called an initial submanifold of Q if for any smooth manifold P, a map $g: P \rightarrow S$ is smooth if and only if $\iota \circ g: P \rightarrow Q$ is smooth, where $\iota: S \hookrightarrow Q$ is the inclusion.

Most prop. of submanifolds hold for initial submanifolds.

Symplectic Orbit Reduction Theorem

- The momentum map \mathbf{J} is transverse to the coadjoint orbit \mathcal{O}_{μ} and hence $\mathrm{J}^{-1}\left(\mathcal{O}_{\mu}\right)$ is an initial submanifold of M. Moreover, the projection $\pi_{\mathcal{O}_{\mu}}: \mathrm{J}^{-1}\left(\mathcal{O}_{\mu}\right) \rightarrow M_{\mathcal{O}_{\mu}}$ is a surjective submersion.
- $M_{\mathcal{O}_{\mu}}$ is a symplectic manifold with the symplectic form $\Omega_{\mathcal{O} \mu}$ uniquely characterized by the relation

$$
\pi_{\mathcal{O}_{\mu}}^{*} \Omega_{\mathcal{O} \mu}=\mathbf{J}_{\mathcal{O}_{\mu}}^{*} \omega_{\mathcal{O}_{\mu}}+i_{\mathcal{O}_{\mu}}^{*} \Omega
$$

where $\mathbf{J}_{\mathcal{O}_{\mu}}$ is the restriction of \mathbf{J} to $\mathbf{J}^{-1}\left(\mathcal{O}_{\mu}\right)$ and $i_{\mathcal{O}_{\mu}}$: $\mathrm{J}^{-1}\left(\mathcal{O}_{\mu}\right) \hookrightarrow M$ is the inclusion.

- The map $\left[i_{\mu}\right]: M_{\mu} \rightarrow M_{\mathcal{O}_{\mu}}$ is a symplectic diffeomorphism.
- Let h be a G-invariant function on M and define \tilde{h} : $M / G \rightarrow \mathbb{R}$ by $h=\tilde{h} \circ \pi$. Then the Hamiltonian vector field X_{h} is also G-invariant and hence induces a vector field
on M / G, which coincides with the Hamiltonian vector field $X_{\widetilde{h}}$. Moreover, the flow of $X_{\widetilde{h}}$ leaves the symplectic leaves $M_{\mathcal{O}_{\mu}}$ of M / G invariant. This flow restricted to the symplectic leaves is again Hamiltonian relative to the symplectic form $\Omega_{\mathcal{O} \mu}$ and the Hamiltonian function $h_{\mathcal{O}_{\mu}}$ given by

$$
h_{\mathcal{O}_{\mu}} \circ \pi_{\mathcal{O}_{\mu}}=h \circ i_{\mathcal{O}_{\mu}} \Longleftrightarrow h_{\mathcal{O}_{\mu}}=\left.\widetilde{h}\right|_{\mathcal{O}_{\mu}}
$$

- If $h, k \in C^{\infty}(M)^{G}$, then

$$
\{h, k\}_{\mathcal{O}_{\mu}}=\left\{h_{\mathcal{O}_{\mu}}, k_{\mathcal{O}_{\mu}}\right\}_{M_{\mathcal{O}_{\mu}}}
$$

This is a theorem in the Poisson category.

COTANGENT BUNDLE REDUCTION

NOTATIONS AND DEFINITIONS

Given is a smooth free proper action $\Phi: G \times Q \rightarrow Q$ and then lift the action to $T^{*} Q$; it preserves the one-form and has an equivarant momentum map $\mathbf{J}: T^{*} Q \rightarrow \mathfrak{g}^{*}$ given by

$$
\left\langle\mathbf{J}\left(\alpha_{q}\right), \xi\right\rangle=\alpha_{q}\left(\xi_{Q}(q)\right), \quad \text { for all } \quad \xi \in \mathfrak{g}
$$

A connection one-form $\mathcal{A} \in \Omega^{1}(Q ; \mathfrak{g})$ on the principal bundle $\pi: Q \rightarrow Q / G$ satisfies

- $\mathcal{A}(q)\left(\xi_{Q}(q)\right)=\xi$ for all $\xi \in \mathfrak{g}$
- $\Phi_{g}^{*} \mathcal{A}=\operatorname{Ad}_{g} \circ \mathcal{A} \Longleftrightarrow \mathcal{A}(g \cdot q)\left(g \cdot v_{q}\right)=\operatorname{Ad}_{g}\left(\mathcal{A}(q)\left(v_{q}\right)\right)$

The horizontal bundle $H:=\operatorname{ker} \mathcal{A} ; T Q=H \oplus V$, where $V_{q}:=\left\{\xi_{Q}(q) \mid \xi \in \mathfrak{g}\right\}$ is the vertical space at $q \in Q$. We have $T_{q} \Phi_{g}\left(H_{q}\right)=H_{g \cdot q}$ for all $g \in G$ and $q \in Q$. The horizontal bundle characterizes the connection.

The curvature $\mathcal{B}=\operatorname{Curv}_{\mathcal{A}} \in \Omega^{2}(Q ; \mathfrak{g})$ of \mathcal{A} is defined by $\mathcal{B}(q)\left(u_{q}, v_{q}\right):=\mathrm{d} \mathcal{A}(q)\left(\operatorname{Hor}_{q} u_{q}, \operatorname{Hor}_{q} v_{q}\right)$, where $\operatorname{Hor}_{q} u_{q}$ is the horizontal component of u_{q}. The Cartan structure equations state

$$
\mathcal{B}(X, Y)=\mathrm{d} \mathcal{A}(X, Y)-[\mathcal{A}(X), \mathcal{A}(Y)] \text { for all } X, Y \in \mathfrak{X}(Q)
$$

COTANGENT BUNDLE REDUCTION:
 EMBEDDING VERSION

What is $\left(T^{*} Q\right)_{\mu}$ concretely?

Form the left principal G_{μ}-bundle $\pi_{Q, G_{\mu}}: Q \rightarrow Q_{\mu}:=$ Q / G_{μ}. The momentum $\operatorname{map} \mathrm{J}^{\mu}: T^{*} Q \rightarrow \mathfrak{g}_{\mu}^{*}$ is

$$
\mathbf{J}^{\mu}\left(\alpha_{q}\right)=\left.\mathbf{J}\left(\alpha_{q}\right)\right|_{\mathfrak{g}_{\mu}}
$$

Let $\mu^{\prime}:=\left.\mu\right|_{\mathfrak{g}_{\mu}} \in \mathfrak{g}_{\mu}^{*}$. Notice that there is a natural inclusion of submanifolds

$$
\mathbf{J}^{-1}(\mu) \subset\left(\mathbf{J}^{\mu}\right)^{-1}\left(\mu^{\prime}\right)
$$

Since the actions are free and proper, μ and μ^{\prime} are regular values, so these sets are indeed smooth manifolds. Note that, by construction, μ^{\prime} is G_{μ}-invariant.

There will be two key assumptions relevant to the embedding version of cotangent bundle reduction. Namely,

CBR1. In the above setting, assume there is
a G_{μ}-invariant one-form α_{μ} on Q with values in $\left(\mathbf{J}^{\mu}\right)^{-1}\left(\mu^{\prime}\right)$.
and the stronger condition

CBR2. Assume that α_{μ} in CBR1 takes values in $\mathbf{J}^{-1}(\mu)$.

Then there is a unique two-form β_{μ} on Q_{μ} such that

$$
\pi_{Q, G_{\mu}}^{*} \beta_{\mu}=\mathrm{d} \alpha_{\mu}
$$

Since $\pi_{Q, G_{\mu}}$ is a submersion, β_{μ} is closed (it need not be exact). Let

$$
B_{\mu}=\pi_{Q_{\mu}}^{*} \beta_{\mu} \in \Omega^{2}\left(T^{*} Q_{\mu}\right)
$$

where $\pi_{Q_{\mu}}: T^{*} Q_{\mu} \rightarrow Q_{\mu}$ is the cotangent bundle projection. Also, to avoid confusion with the canonical symplectic form $\Omega_{\text {can }}$ on $T^{*} Q$, we shall denote the canonical
symplectic form on $T^{*} Q_{\mu}$, the cotangent bundle of μ shape space, by $\omega_{\text {can }}$.

- If condition CBR1 holds, then there is a symplectic embedding

$$
\varphi_{\mu}:\left(\left(T^{*} Q\right)_{\mu}, \Omega_{\mu}\right) \rightarrow\left(T^{*} Q_{\mu}, \omega_{\text {can }}-B_{\mu}\right)
$$

onto a submanifold of $T^{*} Q_{\mu}$ covering the base Q / G_{μ}.

- This map φ_{μ} gives a symplectic diffeomorphism of $\left(\left(T^{*} Q\right)_{\mu}, \Omega_{\mu}\right)$ onto $\left(T^{*} Q_{\mu}, \omega_{\text {can }}-B_{\mu}\right)$ if and only if $\mathfrak{g}=\mathfrak{g}_{\mu}$.
- If CBR2 holds, then the image of φ_{μ} equals the vector subbundle $\left[T \pi_{Q, G_{\mu}}(V)\right]^{\circ}$ of $T^{*} Q_{\mu}$, where $V \subset T Q$ is the vector subbundle consisting of vectors tangent to the G orbits, that is, its fiber at $q \in Q$ equals $V_{q}=\left\{\xi_{Q}(q) \mid \xi \in\right.$ $\mathfrak{g}\}$, and ${ }^{\circ}$ denotes the annihilator relative to the natural duality pairing between $T Q_{\mu}$ and $T^{*} Q_{\mu}$.
- Assume that $\mathcal{A} \in \Omega^{1}(Q ; \mathfrak{g})$ is a connection on the principal bundle $\pi_{Q, G}: Q \rightarrow Q / G$. Then $\alpha_{\mu}(q):=\langle\mu, \mathcal{A}(q)\rangle=$ $\mathcal{A}(q)^{*} \mu \in \Omega^{1}(Q)$ satisfies CBR2. This implies that B_{μ} is the pull back to $T^{*} Q_{\mu}$ of $\mathrm{d} \alpha_{\mu} \in \Omega^{2}(Q)$, which equals the μ-component of the two form $\mathcal{B}+[\mathcal{A}, \mathcal{A}] \in \Omega^{2}(Q ; \mathfrak{g})$, where \mathcal{B} is the curvature of \mathcal{A}.

COTANGENT BUNDLE REDUCTION:

BUNDLE VERSION

Again we will utilize a choice of connection \mathcal{A} on the shape space bundle $\pi_{Q, G}: Q \rightarrow Q / G$. A key step in the argument is to utilize orbit reduction and the identification $\left(T^{*} Q\right)_{\mu} \cong\left(T^{*} Q\right)_{\mathcal{O}} . Q / G$ is called the shape space.

The reduced space $\left(T^{*} Q\right)_{\mu}$ is a locally trivial fiber bundle over $T^{*}(Q / G)$ with typical fiber \mathcal{O} :

$$
\left(T^{*} Q\right)_{\mu} \xrightarrow{\mathcal{O}} T^{*}(Q / G)
$$

ASSOCIATED BUNDLES

G also acts on a manifold V on the left. Then $g \cdot(q, v):=$ $(g \cdot q, g \cdot v)$ is a free proper action so form $P \times_{G} V:=$ $(P \times \times V) / G$. This is a locally trivial fiber bundle over Q / G all of whose fibers are diffeomorphic to V.

If V is a representation space of G, then $Q \times{ }_{G} V \rightarrow Q / G$ is a vector bundle. In particular, if V is \mathfrak{g} or \mathfrak{g}^{*} and the G action is the adjoint or coadjoint action, then $\mathfrak{g}:=Q \times{ }_{G} \mathfrak{g}$ is the adjoint bundle and its dual $\tilde{\mathfrak{g}}^{*}:=Q \times_{G} \mathfrak{g}^{*}$ is the coadjoint bundle.

Unlike the connection form \mathcal{A}, the curvature drops to an adjoint bundle valued two-form $\overline{\mathcal{B}}$ on the base Q / G, namely,

$$
\overline{\mathcal{B}}(\pi(q))\left(T_{q} \pi\left(u_{q}\right), T_{q} \pi\left(v_{q}\right)\right):=\left[q, \mathcal{B}(q)\left(u_{q}, v_{q}\right)\right] \in \tilde{\mathfrak{g}}
$$

PULL BACK COMMUTES WITH ASSOCIATING

- $\pi: P \rightarrow M$ left principal G-bundle. $\tau: N \rightarrow M$ surjective submersion. Define the pull back bundle over N by

$$
\widetilde{P}:=\{(n, p) \in N \times P \mid \pi(p)=\tau(n)\} .
$$

$$
\begin{array}{ccc}
\tilde{P} & \tilde{\tau}_{N, P} & P \\
\tilde{\pi} & & \\
& & \\
& & \left\lvert\, \begin{array}{l}
\mid \\
N
\end{array}\right. \\
& \tau & M
\end{array}
$$

$\tilde{\pi}: \widetilde{P} \rightarrow N$ and $\tilde{\tau}_{N, P}: \widetilde{P} \rightarrow P$ are the projections on the first and second factors. \tilde{P} is a smooth manifold of dimension $\operatorname{dim} P+\operatorname{dim} N-\operatorname{dim} M$ and the free G-action on P induces a free G-action on \widetilde{P} given by

$$
g \cdot(n, p)=(n, g p)
$$

with respect to which, $\tilde{\pi}$ is the projection on the space of orbits.
\tilde{P} is a left principal G-bundle over N and the map $\tilde{\tau}_{N, P}$ is a submersion with fiber over the point $p \in P$ equal to

$$
\begin{aligned}
\tilde{\tau}_{N, P}^{-1}(p) & =\{(n, p) \in N \times P \mid \pi(p)=\tau(n)\} \\
& =\tau^{-1}(\pi(p)) \times\{p\} \subset \tilde{P}
\end{aligned}
$$

and hence diffeomorphic to $\tau^{-1}(\pi(p))$.

Now suppose that there is a left action of G on a manifold V. There are two associated bundles that one can construct: $P \times_{G} V$ and $\tilde{P} \times_{G} V$. They are fiber bundles over M and N respectively, both with fibers diffeomorphic to V.

The associated bundle $\widetilde{P} \times{ }_{G} V \rightarrow N$ is obtained from the principal bundle $\pi: P \rightarrow M$, the surjective submersion $\tau: N \rightarrow M$, and the G-manifold V by pull back and association.

These operations can be reversed. First one forms the associated bundle $\pi_{E}:[p, v] \in E:=P \times{ }_{G} V \mapsto \pi(p) \in M$ and then one pulls it back by the surjective submersion $\tau: N \rightarrow M$. One obtains the pull back bundle $\tilde{\pi}_{E}: \widetilde{E} \rightarrow$ N, whose fibers are all diffeomorphic to V, defined by the following commutative diagram

\[

\]

$\tilde{E}:=\left\{(n,[p, v]) \mid \tau(n)=\pi_{E}([p, v])=\pi(p)\right\}$
$\tilde{\pi}_{E}(n,[p, v]):=n, \tilde{\tau}_{N, E}(n,[p, v]):=[p, v]$.
The fibers of $\tilde{\tau}_{N, E}$ are equal to

$$
\begin{aligned}
\tilde{\tau}_{N, E}^{-1}([p, v]) & =\left\{(n,[p, v]) \mid \tau(n)=\pi_{E}([p, v])=\pi(p)\right\} \\
& =\tau^{-1}(\pi(p)) \times\{[p, v]\} \simeq \tau^{-1}(\pi(p))
\end{aligned}
$$

There is a canonical bundle isomorphism over M

$$
[(n, p), v] \in \widetilde{P} \times_{G} V \longrightarrow(n,[p, v]) \in \widetilde{E}
$$

STERNBERG SPACE

$G \times Q \rightarrow Q$ free proper action, $\pi: Q \rightarrow Q / G$
$\mathcal{A} \in \Omega^{1}(Q ; \mathfrak{g})$ connection, $V(Q), H(Q)$ vertical and horizontal subbundles of $T Q, V_{q}(Q)=\operatorname{ker} T_{q} \pi, \quad H_{q}(Q)=$ $\operatorname{ker} \mathcal{A}(q), T Q=V(Q) \oplus H(Q)$.

Pull back $\pi: Q \rightarrow Q / G$ by the cotangent bundle projection $\tau_{Q / G}: T^{*}(Q / G) \rightarrow Q / G$ to get the G-principal
bundle

$$
\widetilde{Q}=\left\{\left(\alpha_{[q]}, q\right) \in T^{*}(Q / G) \times Q \mid[q]=\pi(q), q \in Q\right\}
$$

over $T^{*}(Q / G)$ with fiber over $\alpha_{[q]}$ diffeomorphic to $\pi^{-1}([q])$. Recall that the G-action on \tilde{Q} is given by $g \cdot\left(\alpha_{[q]}, q\right):=$ $\left(\alpha_{[q]}, g \cdot q\right)$ for any $g \in G$ and $\left(\alpha_{[q]}, q\right) \in \widetilde{Q}$.

$$
\begin{aligned}
& \widetilde{Q} \xrightarrow{\tilde{\tau}_{T^{*}}(Q / G), Q} Q \\
& \tilde{\pi} \left\lvert\, \begin{array}{c}
\\
T^{*}(Q / G) \longrightarrow \\
\tau_{Q / G} \\
\\
\\
\\
\\
\\
\\
\end{array}\right.
\end{aligned}
$$

\widetilde{Q} is a vector bundle over Q which is isomorphic to the annihilator $V(Q)^{\circ} \subset T^{*} Q$ of $V(Q) \subset T Q$. For each $q \in Q$,

$$
V_{q}(Q)^{\circ}:=\left\{\alpha_{q} \in T_{q}^{*} Q \mid\left\langle\alpha_{q}, \xi_{Q}(q)\right\rangle=0\right\} \subset T_{q}^{*} Q
$$

Form the coadjoint bundle of \widetilde{Q}, the Sternberg space

$$
S:=\widetilde{Q} \times_{G} \mathfrak{g}^{*} .
$$

The $\operatorname{map} \varphi_{\mathcal{A}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow T^{*} Q$ given by

$$
\varphi_{\mathcal{A}}\left(\left(\alpha_{[q]}, q\right), \mu\right):=T_{q}^{*} \pi\left(\alpha_{[q]}\right)+\mathcal{A}(q)^{*} \mu
$$

is a G-equivariant vector bundle isomorphism over Q. It descends to a vector bundle isomorphism over Q / G

$$
\Phi_{\mathcal{A}}: S \rightarrow\left(T^{*} Q\right) / G .
$$

The Sternberg space Poisson bracket $\{\cdot, \cdot\}_{S}$ is defined as the pull back by $\Phi_{\mathcal{A}}$ of the Poisson bracket of $\left(T^{*} Q\right) / G$.

WEINSTEIN SPACE

Form the coadjoint bundle $\tilde{\mathfrak{g}}^{*}:=Q \times{ }_{G} \mathfrak{g}^{*}$. Then pull it back by the cotangent bundle projection $\tau_{Q / G}: T^{*}(Q / G) \rightarrow$ Q / G and get

$$
\begin{aligned}
& W:=\left\{\left(\alpha_{[q]},[q, \mu]\right) \in T^{*}(Q / G) \times \tilde{\mathfrak{g}}^{*} \mid\right. \\
& \left.\quad \tau_{Q / G}\left(\alpha_{[q]}\right)=\pi_{\tilde{\mathfrak{g}}^{*}}([q, \mu]):=[q]\right\}
\end{aligned}
$$

$$
W \xrightarrow{\tilde{\tau}_{T^{*}}(Q / G), \tilde{\mathfrak{g}}^{*}} \tilde{\mathfrak{g}}^{*}
$$

$\tilde{\boldsymbol{q}}_{\tilde{\mathfrak{g}}^{*}}, \tilde{\tau}_{T^{*}(Q / G), \tilde{\mathfrak{g}}^{*}}$ first and second projections.
W is a vector bundle over $T^{*}(Q / G)$ with fiber $\tilde{\pi}_{\mathfrak{g}^{*}}^{-1}\left(\alpha_{[q]}\right)=$ $\pi_{\tilde{\mathfrak{g}}^{*}}^{-1}([q])=\left\{[q, \mu] \mid \mu \in \mathfrak{g}^{*}\right\}$ over $\alpha_{[q]}$.
W is also a vector bundle over Q / G relative to the projection $\left(\alpha_{[q]},[q, \mu]\right) \in W \mapsto[q] \in Q / G$; the fiber over $[q]$
equals $W_{[q]}=T_{[q]}^{*}(Q / G) \oplus \tilde{\mathfrak{g}}_{[q]}^{*}$. That is, we have the immediate identification

$$
W=T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}
$$

as vector bundles of Q / G.

There exists a vector bundle isomorphism over Q / G

$$
\Psi_{\mathcal{A}}:\left[\alpha_{q}\right] \in\left(T^{*} Q\right) / G \longmapsto\left(\operatorname{hor}_{q}^{*}\left(\alpha_{q}\right),\left[q, \mathbf{J}\left(\alpha_{q}\right)\right]\right) \in W,
$$

where $\operatorname{hor}_{q}:=\left(\left.T_{q} \pi\right|_{H(Q)_{q}}\right)^{-1}: T_{[q]}(Q / G) \rightarrow H_{q}(Q) \subset T_{q} Q$ is the horizontal lift operator. Thus $\operatorname{hor}_{q}^{*}: T_{q}^{*} Q \rightarrow$ $T_{[q]}^{*}(Q / G)$ is a linear surjective map whose kernel is the annihilator $H(Q)_{q}^{\circ}$ of the horizontal space.

The Weinstein space Poisson bracket $\{\cdot, \cdot\}_{W}$ is the push forward by $\Psi_{\mathcal{A}}$ of the Poisson bracket of $\left(T^{*} Q\right) / G$.

Recall that pull back and association commute.

The following diagram of vector bundle isomorphisms over Q / G is commutative

$$
\left(T^{*} Q\right) / G
$$

$\Phi:\left(S,\{\cdot, \cdot\}_{S}\right) \rightarrow\left(W,\{\cdot, \cdot\}_{W}\right)$ is an isomorphism of Poisson manifolds. Also, $\Phi^{*}: W_{\alpha_{[q]}}^{*} \rightarrow S_{\alpha_{[q]}}^{*}$ restricted to each fiber (which is isomorphic to \mathfrak{g}) is an isomorphism of Lie algebras for every $\alpha_{[q]} \in T^{*}(Q / G)$, that is, $\Phi^{*}: W^{*} \rightarrow S^{*}$ is an isomorphism of Lie algebra bundles.

COVARIANT EXTERIOR DERIVATIVES

ON ASSOCIATED BUNDLES
$\pi: P \rightarrow M$ left principal G-bundle, V a left representation space of $G, \operatorname{hor}_{p}: T_{\pi(p)} M \rightarrow T_{p} P$ the horizontal lift operator at $p \in P$ of the given connection $\mathcal{A} \in \Omega^{1}(P ; \mathfrak{g})$.

Then the horizontal lift operator of the induced affine
connection on the associated vector bundle $\pi_{E}: E=$ $P \times{ }_{G} V \rightarrow M$ induced by \mathcal{A} is given by

$$
\operatorname{hor}_{[p, v]}\left(u_{m}\right):=T_{(p, v)} \pi_{P \times V}\left(\operatorname{hor}_{p}\left(u_{m}\right), 0\right)
$$

where $p \in P, v \in V, m=\pi(p)=[p], u_{m} \in T_{m} M, \pi_{P \times V}$: $P \times V \rightarrow E$ is the orbit map, and $[p, v]:=\pi_{P \times V}(p, v) \in E$.

The covariant derivative $\mathbf{d}_{\mathcal{A}} f$ of $f \in C^{\infty}\left(P \times_{G} V\right)$ relative to the affine connection given by this horizontal lift operator is

$$
\mathbf{d}_{\mathcal{A}} f([p, v])\left(u_{m}\right):=\mathbf{d} f([p, v])\left(\operatorname{hor}_{[p, v]}\left(u_{m}\right)\right) \in T_{m}^{*} M
$$

COVARIANT EXTERIOR DERIVATIVES

ON PULL BACK VECTOR BUNDLES
$\pi: E \rightarrow M$ vector bundle with an affine connection ∇, N another manifold, $\tau: N \rightarrow M$ a surjective submersion. Denote by $\widetilde{E}:=\{(n, \epsilon) \mid \tau(n)=\pi(\epsilon)\}$ the pull back bundle over N, which is a vector bundle $\tilde{\pi}: \widetilde{E} \rightarrow N$, where $\tilde{\pi}$ is the projection on the first factor N. Denote by $\tilde{\tau}_{N, E}: \tilde{E} \rightarrow E$ the projection on the second factor E and recall that $\pi \circ \tilde{\tau}_{N, E}=\tau \circ \tilde{\pi}$. Denote for any $\epsilon \in E$ by hor $_{\epsilon}: T_{\pi(\epsilon)} M \rightarrow T_{\epsilon} E$ the horizontal lift operator of the connection ∇.

Define the horizontal lift operator $\operatorname{hor}_{(n, \epsilon)}: T_{n} N \rightarrow T_{(n, \epsilon)} \tilde{E}$

$$
\operatorname{hor}_{(n, \epsilon)}\left(v_{n}\right):=\left(v_{n}, \operatorname{hor}_{\epsilon} T_{n} \tau\left(v_{n}\right)\right)
$$

for $(n, \epsilon) \in \tilde{E}, v_{n} \in T_{n} N$.

If $f \in C^{\infty}(\widetilde{E})$, its covariant exterior derivative $\widetilde{\nabla} f(n, \epsilon) \in$ $T_{n}^{*} N$ is defined by

$$
\widetilde{\nabla} f(n, \epsilon)\left(v_{n}\right):=\mathrm{d} f(n, \epsilon)\left(\operatorname{hor}_{(n, \epsilon)}\left(v_{n}\right)\right)
$$

where $(n, \epsilon) \in \widetilde{P}$ and $v_{n} \in T_{n} N$.

COVARIANT EXTERIOR DERIVATIVES

ON S AND W

Recall that $\widetilde{\pi}: \widetilde{Q} \rightarrow T^{*}(Q / G)$ is a principal G-bundle, the pull back of $\pi: Q \rightarrow Q / G$ over the cotangent bundle projection $\tau_{Q / G}: T^{*}(Q / G) \rightarrow Q / G$. Recall that $\tilde{\tau}_{T^{*}(Q / G), Q}: \widetilde{Q} \rightarrow Q$ is the projection on the seccond factor. So $\tilde{\mathcal{A}}:=\tilde{\tau}_{T^{*}}^{*}(Q / G), Q^{\mathcal{A}} \in \Omega^{1}(\widetilde{Q} ; \mathfrak{g})$ is a connection. Its horizontal lift is

$$
\begin{aligned}
\operatorname{hor}_{\left(\alpha_{[q]}, q\right)}\left(v_{\alpha_{[q]}}\right) & =\left(v_{\alpha_{[q]}}, \operatorname{hor}_{q}\left(T_{\alpha_{[q]}} \tau_{Q / G}\left(v_{\alpha_{[q]}}\right)\right)\right) . \\
H_{\left(\alpha_{[q]}, q\right)}(\widetilde{Q}) & =T_{\alpha_{[q]}}\left(T^{*}(Q / G)\right) \times H_{q}(Q)
\end{aligned}
$$

For the case of the associated bundle $\tilde{\pi}_{\widetilde{Q}}: S \rightarrow T^{*}(Q / G)$, $S:=\widetilde{Q} \times_{G} \mathfrak{g}^{*}, \tilde{\pi}_{\widetilde{Q}}\left(\left[\left(\alpha_{[q]}, q\right), \mu\right]\right)=\alpha_{[q]}$, the formula for the associated horizontal lift at $s=\left[\left(\alpha_{[q]}, q\right), \mu\right] \in S$ becomes

$$
\begin{aligned}
& \operatorname{hor}_{s}\left(v_{\alpha_{[q]}}\right)=T_{\left(\left(\alpha_{[q]}, q\right), \mu\right)} \pi_{\widetilde{Q} \times \mathfrak{g}^{*}}\left(\operatorname{hor}_{\left(\alpha_{[q]}, q\right)} v_{\alpha_{[q]}}, 0\right) \\
& \quad=T_{\left(\left(\alpha_{[q]}, q\right), \mu\right)} \pi_{\tilde{Q} \times \mathfrak{g}^{*}}\left(\left(v_{\alpha_{[q]}}, \operatorname{hor}_{q}\left(T_{\alpha_{[q]}} \tau_{Q / G}\left(v_{\alpha_{[q]}}\right)\right)\right), 0\right),
\end{aligned}
$$

$\pi_{\widetilde{Q} \times \mathfrak{g}^{*}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow S=\widetilde{Q} \times{ }_{G} \mathfrak{g}^{*}$ is the orbit projection.

Let $f \in C^{\infty}(S), s=\left[\left(\alpha_{[q]}, q\right), \mu\right] \in S$. The pull back connection one-form $\widetilde{\mathcal{A}} \in \Omega^{1}(\widetilde{Q} ; \mathfrak{g})$ defines hence a covector
$\mathbf{d}_{\widetilde{\mathcal{A}}}^{S} f(s) \in T_{\tilde{\pi}_{\widetilde{Q}}(s)}^{*} T^{*}(Q / G)$ by
$\mathbf{d}_{\tilde{\mathcal{A}}}^{S} f(s)\left(v_{\alpha_{[q]}}\right):=\mathrm{d} f(s)\left(\operatorname{hor}_{s}\left(v_{\alpha_{[q]}}\right)\right)=$
$\mathbf{d} f(s)\left(T_{\left(\left(\alpha_{[q]}, q\right), \mu\right)} \pi_{\widetilde{Q} \times \mathfrak{g}^{*}}\left(\left(v_{\alpha_{[q]}}, \operatorname{hor}_{q}\left(T_{\alpha_{[q]}} \tau_{Q / G}\left(v_{\alpha_{[q]}}\right)\right)\right), 0\right)\right)$,
where $\tilde{\pi}_{\widetilde{Q}}(s)=\alpha_{[q]}$, and and $v_{\alpha_{[q]}} \in T_{\alpha_{[q]}}\left(T^{*}(Q / G)\right)$.
W is the pull back of the vector bundle $\pi_{\tilde{\mathfrak{g}}^{*}}: \tilde{\mathfrak{g}}^{*} Q / G$, which has an affine connection as an associated bundle, by $\tau_{Q / G}: T^{*}(Q / G) \rightarrow Q / G$. So there is an induced $\widetilde{\nabla}^{W}$ covariant derivative on W. If $f \in C^{\infty}(W)$ then

$$
\begin{aligned}
\widetilde{\nabla}^{W} f\left(\alpha_{[q]},[q, \mu]\right) & =\mathrm{d} f\left(\alpha_{[q]},[q, \mu]\right) \circ \operatorname{hor}_{\left(\alpha_{[q]},[q, \mu]\right)} \\
& \in T_{\alpha_{[q]}^{*}}^{*}\left(T^{*}(Q / G)\right) .
\end{aligned}
$$

POISSON BRACKETS ON S AND W

Let $s=\left[\left(\alpha_{[q]}, q\right), \mu\right] \in S$ and $v=[q, \mu] \in \tilde{\mathfrak{g}}^{*}$. The Poisson bracket of $f, g \in C^{\infty}(S)$ is given by

$$
\begin{aligned}
\{f, g\}_{S}(s) & =\Omega_{Q / G}\left(\alpha_{[q]}\right)\left(\mathbf{d}_{\tilde{\mathcal{A}}}^{S} f(s)^{\sharp}, \mathbf{d}_{\tilde{\mathcal{A}}}^{S} g(s)^{\sharp}\right) \\
& +\left\langle v, \widetilde{\mathcal{B}}\left(\alpha_{[q]}\right)\left(\mathbf{d}_{\widetilde{\mathcal{A}}}^{S} f(s)^{\sharp}, \mathbf{d}_{\tilde{\mathcal{A}}^{S}} g(s)^{\sharp}\right)\right\rangle-\left\langle s,\left[\frac{\delta f}{\delta s}, \frac{\delta g}{\delta s}\right]\right\rangle,
\end{aligned}
$$

where $\Omega_{Q / G}$ is the canonical symplectic form on $T^{*}(Q / G)$, $\tilde{\mathcal{B}} \in \Omega^{2}\left(T^{*}(Q / G) ; \tilde{\mathfrak{g}}\right)$ is thus the $\tilde{\mathfrak{g}}$-valued two-form on $T^{*}(Q / G)$ given by $\widetilde{\mathcal{B}}=\tau_{Q / G}^{*} \overline{\mathcal{B}}$, with $\overline{\mathcal{B}} \in \Omega^{2}(Q / G, \tilde{\mathfrak{g}})$, $\sharp: T^{*}\left(T^{*}(Q / G)\right) \rightarrow T\left(T^{*}(Q / G)\right)$ is the vector bundle isomorphism induced by $\Omega_{Q / G}$, and $\delta f / \delta s \in S^{*}=\widetilde{Q} \times{ }_{G} \mathfrak{g}$ is
the usual fiber derivative of f at the point $s \in S$, that is,

$$
\left\langle s^{\prime}, \frac{\delta f}{\delta s}\right\rangle:=\left.\frac{d}{d t}\right|_{t=0} f\left(\left[\left(\alpha_{[q]}, q\right), \mu+t \nu\right]\right)
$$

for any $\left.s^{\prime}:=\left[\left(\alpha_{[q]}, q\right), \nu\right)\right] \in S$.

The third term has a more convenient expression. Denote by $\delta f / \delta v \in \tilde{\mathfrak{g}}$ the unique element in the fiber at $[q]$ of the adjoint bundle $\tilde{\mathfrak{g}}$ defined by the equality

$$
\begin{aligned}
\left\langle[q, \nu], \frac{\delta f}{\delta v}\right\rangle & =\left.\frac{d}{d t}\right|_{t=0} f\left(\left[\left(\alpha_{[q]}, q\right), \mu+t \nu\right]\right) \\
& \left.=\left\langle\left[\left(\alpha_{[q]}, q\right), \nu\right)\right], \frac{\delta f}{\delta s}\right\rangle
\end{aligned}
$$

for any $\nu \in \mathfrak{g}^{*}$, where $s=\left[\left(\alpha_{[q]}, q\right), \mu\right] \in S=\widetilde{Q} \times_{G} \mathfrak{g}^{*}$ and $v=[q, \mu] \in \tilde{\mathfrak{g}}^{*}$.

Thus $\delta f / \delta v$ is an element in $\tilde{\mathfrak{g}}$ over the point $[q] \in Q / G$ and can therefore be paired with $[q, \nu] \in \tilde{\mathfrak{g}}^{*}$. Note that we abuse here the symbol $\delta f / \delta v$ which should denote the usual fiber derivative of a function on the vector bundle $\tilde{\mathfrak{g}}^{*}$; however, this makes no a priori sense in this case, since $f \in C^{\infty}(S)$ is not a function on $\tilde{\mathfrak{g}}^{*}$. Nevertheless we retain this notation for it is suggestive of the result. With this definition, for $s=\left[\left(\alpha_{[q]}, q\right), \mu\right] \in S$ and $v=$ $[q, \mu] \in \tilde{\mathfrak{g}}^{*}$, we have

$$
\left\langle s,\left[\frac{\delta f}{\delta s}, \frac{\delta g}{\delta s}\right]\right\rangle=\left\langle v,\left[\frac{\delta f}{\delta v}, \frac{\delta g}{\delta v}\right]\right\rangle .
$$

$w=\left(\alpha_{[q]},[q, \mu]\right), v=[q, \mu], \widetilde{\mathcal{B}}=\tau_{Q / G}^{*} \overline{\mathcal{B}} \in \Omega^{2}\left(T^{*}(Q / G) ; \tilde{\mathfrak{g}}\right)$.
The Poisson bracket of $f, g \in C^{\infty}(W)$ is given by

$$
\begin{aligned}
\{f, g\}_{W}(w)= & \Omega_{Q / G}\left(\alpha_{[q]}\right)\left(\widetilde{\nabla}_{\mathcal{A}}^{W} f(w)^{\sharp}, \widetilde{\nabla}_{\mathcal{A}}^{W} g(w)^{\sharp}\right) \\
& +\left\langle v, \tilde{\mathcal{B}}\left(\alpha_{[q]}\right)\left(\widetilde{\nabla}_{\mathcal{A}}^{W} f(w)^{\sharp}, \widetilde{\nabla}_{\mathcal{A}}^{W} g(w)^{\sharp}\right)\right\rangle \\
& -\left\langle w,\left[\frac{\delta f}{\delta w}, \frac{\delta g}{\delta w}\right]\right\rangle .
\end{aligned}
$$

$\delta f / \delta w \in W^{*}$ is the fiber derivative of f in W.

What are the symplectic leaves?

MINIMAL COUPLING CONSTRUCTION

Construction of presymplectic forms on associated bundles.
$\sigma: P \rightarrow B$ a left principal G-bundle, $\mathcal{A} \in \Omega^{1}(P ; \mathfrak{g})$ a connection one-form on $P,(M, \omega)$ a Hamiltonian G-space with equivariant momentum map $\mathbf{J}: M \rightarrow \mathfrak{g}^{*}$, and denote by $\Pi_{P}: P \times M \rightarrow P$ and $\Pi_{M}: P \times M \rightarrow M$ the two projections. Then $\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle \in \Omega^{1}(P \times M)$ defined by

$$
\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle(p, m)\left(u_{p}, v_{m}\right):=\left\langle\mathbf{J}(m), \mathcal{A}(p)\left(v_{p}\right)\right\rangle
$$

for all $p \in P, m \in M, u_{p} \in T_{p} P$, and $v_{m} \in T_{m} M$, is a G-invariant one-form.

Thus, if $\xi_{P \times M}=\left(\xi_{P}, \xi_{M}\right)$ is the infinitesimal generator of the diagonal G-action on $P \times M$ defined by $\xi \in \mathfrak{g}$, we have $£_{\xi_{P \times M}}\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle=0$. A computation shows

$$
\mathbf{i}_{\xi_{P \times M}}\left(\mathbf{d}\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle+\Pi_{M}^{*} \omega\right)=0
$$

Since $\mathbf{d}\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle+\Pi_{M}^{*} \omega$ is also G-invariant, it follows that the closed two-form $\mathbf{d}\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle+\Pi_{M}^{*} \omega$ descends to a closed two form $\omega^{\mathcal{A}} \in \Omega^{2}\left(P \times_{G} M\right)$, that is, $\omega^{\mathcal{A}}$ is characterized by the relation

$$
\rho^{*} \omega^{\mathcal{A}}=\mathrm{d}\left\langle\Pi_{M}^{*} \mathbf{J}, \Pi_{P}^{*} \mathcal{A}\right\rangle+\Pi_{M}^{*} \omega
$$

where $\rho: P \times M \rightarrow P \times{ }_{G} M$ is the projection to the orbit space.

Now assume, in addition, that the base (B, Ω) is a symplectic manifold and denote by $\sigma_{M}: P \times_{G} M \rightarrow B$ the associated fiber bundle projection given by $\sigma_{M}([p, m]):=$ $\sigma(p)$. Then $\sigma_{M}^{*} \Omega$ is also a closed two-form on $P \times_{G} M$ and one gets the minimal coupling presymplectic form $\omega^{\mathcal{A}}+\sigma_{M}^{*} \Omega$. In general, this presymplectic form is degenerate.

SYMPLECTIC FORM ON $\widetilde{Q} \times{ }_{G} \mathcal{O}$

Apply the minimal coupling construction: $P=\widetilde{Q}, B=$ $T^{*}(Q / G), \Omega=\Omega_{Q / G}=-\mathbf{d} \Theta_{Q / G}, \sigma=\tilde{\pi}:\left(\alpha_{[q]}, q\right) \in$ $\widetilde{Q} \mapsto \alpha_{[q]} \in T^{*}(Q / G)$, the connection on this principal G bundle is $\widetilde{\mathcal{A}}=\tilde{\tau}_{T^{*}}^{*}(Q / G), Q \mathcal{A} \in \Omega^{1}(\widetilde{Q} ; \mathfrak{g})$, where $\tilde{\tau}_{T^{*}(Q / G), Q}$: $\widetilde{Q} \rightarrow Q$ is the projection on the second factor, $(M, \omega)=$ $\left(\mathcal{O}, \omega_{\mathcal{O}}^{-}\right), \mathbf{J}=\mathbf{J}_{\mathcal{O}}: \mathcal{O} \rightarrow \mathfrak{g}^{*}$ is given by $\mathbf{J}_{\mathcal{O}}(\mu)=-\mu$ for any $\mu \in \mathfrak{g}^{*}$, and $\rho: \widetilde{Q} \times \mathcal{O} \rightarrow \widetilde{Q} \times{ }_{G} \mathcal{O}$ is the quotient map for the diagonal G-action. Note that $\rho=\left.\pi_{\tilde{Q} \times \mathfrak{g}^{*}}\right|_{\tilde{Q} \times \mathcal{O}}$ where $\pi_{\tilde{Q} \times \mathfrak{g}^{*}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow S$ is the projection onto the G-orbit space. Then $\sigma_{M}=\tilde{\pi}_{\widetilde{Q}}: \widetilde{Q} \times_{G} \mathcal{O} \rightarrow T^{*}(Q / G)$ is given by $\tilde{\pi}_{\tilde{Q}}\left(\left[\left(\alpha_{[q]}, q\right), \mu\right]\right)=\alpha_{[q]}$.

Denote the two form $\omega^{\mathcal{A}}$ in this situation by $\tilde{\omega}_{\mathcal{O}}^{-}$and hence it is uniquely characterized by the relation

$$
\rho^{*} \tilde{\omega}_{\mathcal{O}}^{-}=\mathrm{d}\left\langle\Pi_{\mathcal{O}}^{*} \mathbf{J}_{\mathcal{O}}, \Pi_{\widetilde{Q}}^{*} \tilde{\mathcal{A}}\right\rangle+\Pi_{\mathcal{O}}^{*} \omega_{\mathcal{O}}^{-},
$$

where $\Pi_{\tilde{Q}}: \widetilde{Q} \times \mathcal{O} \rightarrow \widetilde{Q}$ and $\Pi_{\mathcal{O}}: \widetilde{Q} \times \mathcal{O} \rightarrow \mathcal{O}$ are the projections on the two factors.

The two-form $\tilde{\omega}_{\mathcal{O}}^{-}+\tilde{\pi}_{\tilde{Q}}^{*} \Omega_{Q / G}$ on $\widetilde{Q} \times_{G} \mathcal{O}$ is obtained by reduction.

- Recall: The G-equivariant vector bundle isomorphism $\varphi_{\mathcal{A}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow T^{*} Q$ is defined by $\varphi_{\mathcal{A}}\left(\left(\alpha_{[q]}, q\right), \mu\right):=$ $T_{q}^{*} \pi\left(\alpha_{[q]}\right)+\mathcal{A}(q)^{*} \mu$ for any $\left(\left(\alpha_{[q]}, q\right), \mu\right) \in \widetilde{Q} \times \mathfrak{g}^{*}$.
- Let $\mathbf{J}_{T^{*} Q}: T^{*} Q \rightarrow \mathfrak{g}^{*}$ be the momentum map of the lifted G-action. Define $\mathbf{J}_{\mathcal{A}}:=\mathbf{J}_{T^{*} Q} \circ \varphi_{\mathcal{A}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$. Then $\mathbf{J}_{\mathcal{A}}=\Pi_{\mathfrak{g}^{*}}$, the projection on the second factor. Hence $\mathrm{J}_{\mathcal{A}}^{-1}(\mathcal{O})=\widetilde{Q} \times \mathcal{O}$.
- $\Omega_{\mathcal{A}}=-\mathbf{d} \Theta_{\mathcal{A}}$ is a symplectic form on $\widetilde{Q} \times \mathfrak{g}^{*}$, where

$$
\begin{aligned}
\Theta_{\mathcal{A}}\left(\left(\alpha_{[q]}, q\right), \mu\right) & \left.\left(u_{\alpha_{[q]}}, v_{q}\right), \nu\right) \\
& =\left\langle\alpha_{[q]}, T_{q} \pi\left(v_{q}\right)\right\rangle+\left\langle\mu, \mathcal{A}(q)\left(v_{q}\right)\right\rangle \\
\left(\left(\alpha_{[q]}, q\right), \mu\right) \in \widetilde{Q} \times \mathfrak{g}^{*}, & \left(u_{\alpha_{[q]}}, v_{q}\right) \in T_{\left(\alpha_{[q]}, q\right)} \widetilde{Q}, \nu \in \mathfrak{g}^{*} .
\end{aligned}
$$

- So $\mathbf{J}_{\mathcal{A}}: \widetilde{Q} \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is the equivariant momentum map of the canonical G-action on the symplectic manifold $\left(\widetilde{Q} \times \mathfrak{g}^{*}, \Omega_{\mathcal{A}}\right)$.
- Therefore, $\widetilde{Q} \times{ }_{G} \mathcal{O}=\mathbf{J}_{\mathcal{A}}^{-1}(\mathcal{O}) / G$ has the reduced symplectic form $\tilde{\omega}_{\mathcal{O}}^{-}+\tilde{\pi}_{\tilde{Q}}^{*} \Omega_{Q / G}$.

The symplectic leaves of S are the connected components of the symplectic manifolds $\left(\widetilde{Q} \times_{G} \mathcal{O}, \tilde{\omega}_{\mathcal{O}}^{-}+\tilde{\pi}_{\widetilde{Q}}^{*} \Omega_{Q / G}\right)$, where \mathcal{O} is a coadjoint orbit in \mathfrak{g}^{*}.

Symplectic leaves of W

Recall that $\Phi: S \rightarrow W$ given by

$$
\Phi\left(\left[\left(\alpha_{[q]}, q\right), \mu\right]\right)=\left(\alpha_{[q]},[q, \mu]\right)
$$

is a Poisson diffeomorphism. Therefore, the symplectic leaves of the Poisson manifold $\left(W,\{,\}_{W}\right)$ are the connected components of the symplectic manifolds

$$
\left(\Phi\left(\widetilde{Q} \times_{G} \mathcal{O}\right), \Phi_{*}\left(\tilde{\omega}_{\mathcal{O}}^{-}+\tilde{\pi}_{\widetilde{Q}}^{*} \Omega_{Q / G}\right)\right) .
$$

Who are they?

$$
\begin{aligned}
\Phi & \left(\widetilde{Q} \times_{G} \mathcal{O}\right) \\
& =\left\{\left(\alpha_{[q]},[q, \mu]\right) \mid q \in Q, \alpha_{[q]} \in T_{[q]}(Q / G), \mu \in \mathcal{O} \subset \mathfrak{g}^{*}\right\} \\
& =T^{*}(Q / G) \oplus\left(Q \times_{G} \mathcal{O}\right) \\
& \subset W=T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}=T^{*}(Q / G) \oplus\left(Q \times_{G} \mathfrak{g}^{*}\right) .
\end{aligned}
$$

Here, $T^{*}(Q / G) \oplus\left(Q \times{ }_{G} \mathcal{O}\right)$ is a fiber subbundle, not a vector subbundle, of $T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$; we still use the Whitney sum symbol, even though it is a fibered product of fiber bundles, to recall the fact that it is a subbundle of the Whitney sum bundle $W=T^{*}(Q / G) \oplus \tilde{\mathfrak{g}}^{*}$.

The closed G-invariant two-form $\omega_{Q \times \mathcal{O}}^{-} \in \Omega^{2}(Q \times \mathcal{O})$ defined by

$$
\begin{aligned}
& \omega_{Q \times \mathcal{O}}^{-}(q, \mu)\left(\left(u_{q},-\operatorname{ad}_{\xi}^{*} \mu\right),\left(v_{q},-\operatorname{ad}_{\eta}^{*} \mu\right)\right) \\
&:=-\operatorname{d}\left(\mathcal{A} \times \operatorname{id}_{\mathcal{O}}\right)(q, \mu)\left(\left(u_{q},-\operatorname{ad}_{\xi}^{*} \mu\right),\left(v_{q},-\operatorname{ad}_{\eta}^{*} \mu\right)\right) \\
& \quad+\omega_{\overline{\mathcal{O}}}^{-}(\mu)\left(-\operatorname{ad}_{\xi}^{*} \mu,-\operatorname{ad}_{\eta}^{*} \mu\right)
\end{aligned}
$$

where $\mathcal{A} \times \mathrm{id}_{\mathcal{O}} \in \Omega^{1}\left(Q \times \mathfrak{g}^{*}\right)$ is given by

$$
\left(\mathcal{A} \times \mathrm{id}_{\mathcal{O}}\right)(q, \mu)\left(u_{q},-\operatorname{ad}_{\xi}^{*} \mu\right)=\left\langle\mu, \mathcal{A}(q)\left(u_{q}\right)\right\rangle
$$

drops to a closed two-form $\omega_{Q}^{-} \times_{G} \mathcal{O} \in \Omega^{2}\left(Q \times_{G} \mathcal{O}\right)$, that is, $\omega_{Q \times{ }_{G} \mathcal{O}}$ is uniquely determined by the identity

$$
\pi_{Q \times \mathcal{O}}^{*} \omega_{Q} \times_{G} \mathcal{O}=\omega_{Q} \times \mathcal{O}
$$

where $\pi_{Q \times \mathcal{O}}: Q \times \mathcal{O} \rightarrow Q \times{ }_{G} \mathcal{O}$ the orbit space projection.

The symplectic leaves of W are the connected components of the symplectic manifolds
$\left(T^{*}(Q / G) \oplus\left(Q \times{ }_{G} \mathcal{O}\right), \Pi_{T^{*}(Q / G)}^{*} \Omega_{Q / G}+\Pi_{Q \times{ }_{G} \mathcal{O}}^{*} \omega_{Q}^{-} \times{ }_{G} \mathcal{O}\right)$,
where \mathcal{O} is a coadjoint orbit in $\mathfrak{g}^{*}, \Omega_{Q / G}$ is the canonical symplectic form on $T^{*}(Q / G), \omega_{Q \times{ }_{G} \mathcal{O}}$ is the closed twoform on $Q \times{ }_{G} \mathcal{O}$ given above, and $\Pi_{T^{*}(Q / G)}: T^{*}(Q / G) \oplus$ $\left(Q \times_{G} \mathcal{O}\right) \rightarrow T^{*}(Q / G), \Pi_{Q \times{ }_{G} \mathcal{O}}: T^{*}(Q / G) \oplus\left(Q \times_{G} \mathcal{O}\right) \rightarrow$ $Q \times{ }_{G} \mathcal{O}$ are the projections on the two factors.

Bibliography

Geometric mechanics books

- R. Abraham and J.E. Marsden, Foundations of Mechanics, second edition, revised and enlarged. With the assistance of Tudor Ratiu and Richard Cushman. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Available in AMS Chelsea.
- V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60, second edition, Springer-Verlag 1989.
- A.M. Bloch, Nonholonomic Mechanics and Control, second edition, SpringerVerlag, 2015.
- R.H. Cushman and L.M. Bates, Global Aspects of Classical Integrable Systems, Birhäuser, Basel, 1997.
- R.H. Cushman, J.J. Duistermaat, J. Śniatycki, Geometry of Nonholonomically Constrained Systems, Advanced Series in Nonlinear Dynamics, 26, World Scientific, Singapore 2010.
- D.D. Holm, Geometric Mechanics, two volumes, second edition, Imperial College Press, 2011.
- J.E. Marsden, Lectures on Mechanics, second edition, London Mathematical Society Lecture Note Series, Cambridge University Press,
- J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, second edition, Texts in Applied Mathematics, 17, Springer-Verlag, 1999
- J. Montaldi, T.S. Ratiu, Geometric Mechanics and Symmetry, The Peyresq Lectures, London Mathematical Society Lecture Note Series 306, Cambridge University Press, 2005.

Symplectic geometry books

- L. Hörmander, The Analysis of Linear Differential Operators III, Grundlehren der mathematischen Wissenschaften 274, corrected second printing, 1994, Chapter 21.
- J.E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T.S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, 1913, SpringerVerlag, Berlin Heidelberg, 2007.
- P.W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, 93, American Mathematical Society, Providence, RI, 2008. Chapter 7.
- J.-P. Ortega and T.S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics 222, Birkhäuser, Boston, 2004
- A. Weinstein, Lectures on Symplectic Manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976. Regional Conference Series in Mathematics, 29. American Mathematical Society, Providence, R.I., 1977.

There are many papers on applications: stability with energy-Casimir and energymomentum method, fluid mechanics, complex fluids, control and mechanics.

